# High-Resolution Near Infrared Spectroscopy and Vibrational Dynamics of Dideuteromethane $(CH_2D_2)^\dagger$

## O. N. Ulenikov,<sup>‡,§</sup> E. S. Bekhtereva,<sup>‡,§</sup> S. Albert,<sup>‡</sup> S. Bauerecker,<sup>‡,||</sup> H. Hollenstein,<sup>‡</sup> and M. Quack<sup>\*,‡</sup>

Physical Chemistry, ETH Zürich, CH-8093 Zürich, Switzerland, Laboratory of Molecular Spectroscopy, Physics Department, Tomsk State University, Tomsk, 634050, Russia, and Technische Universität Braunschweig, D - 38106, Braunschweig, Germany

Received: November 7, 2008; Revised Manuscript Received: December 22, 2008

We report the infrared spectrum of  $CH_2D_2$  measured in the range from 2800 to 6600 cm<sup>-1</sup> with the Zürich highresolution Fourier transform interferometer Bruker IFS 125 prototype (ZP 2001, with instrumental bandwidth less than  $10^{-3}$  cm<sup>-1</sup>) at 78 K in a collisional enclosive flow cooling cell used in the static mode. Precise experimental values (with uncertainties between 0.0001 and 0.001 cm<sup>-1</sup>) were obtained for the band centers by specific assignment of transitions to the J = 0 level of 71 vibrational levels. In combination with 22 previously known band centers, these new results were used as the initial information for the determination of the harmonic frequencies, force constant parameters  $F_{ij}$ , anharmonic coefficients, and vibrational resonance interaction parameters. A set of 47 fitted parameters for an effective Hamiltonian reproduces the vibrational level structure of the  $CH_2D_2$  molecule up to 6600 cm<sup>-1</sup> with a root-mean-square deviation  $d_{rms} = 0.67$  cm<sup>-1</sup>. The results are discussed in relation to the multidimensional potential hypersurface of methane and its vibrational dynamics.

#### 1. Introduction

The vibrational spectroscopy and vibrational dynamics of polyatomic molecules on multidimensional Born-Oppenheimer potential hypersurfaces has been a long standing problem of molecular spectroscopy and molecular physics.<sup>1-3</sup> The traditional approach to relate spectra and properties of potential hypersurfaces has been to start out from the harmonic approximation and to derive anharmonic potential constants in a Taylor series expansion by means of fitting effective Hamiltonians derived from perturbation theory to experimental rovi-brational spectra.<sup>4-12</sup> However, it was recognized some time ago that for an accurate description of the relation between spectra, vibrational dynamics, and potential hypersurfaces vibrational (and rovibrational) variational calculations are necessary. Max Wolfsberg and his colleagues have been among the pioneers in this field with early calculations on H<sub>2</sub>O and  $CH_2O^{13-16}$  about a quarter century ago. Over the years numerous calculations of increasing accuracy have been reported for these two semirigid molecules, and we quote here as examples (from a very large literature on the topic) only a few (see ref 17-22 and references cited therein). Also the question of spectra and dynamics of nonrigid molecules and clusters has been tackled successfully by formulating global potential hypersurfaces and carrying out full dimensional variational quantum dynamical calculations including tunneling processes for up to four-atom systems such as the dimer  $(HF)_2$  of hydrogen fluoride<sup>23-26</sup> and also the hydrogen peroxide molecule (HOOH) with the possibility of picosecond stereomutation tunneling.<sup>27-29</sup>

Another important example in the development of our understanding of relating spectra, dynamics, and potential hypersurfaces is the organic prototype molecule methane. Here, it was recognized in the 1980s that, for instance, the effective Hamiltonian anharmonic Fermi resonance coupling constant  $k_{sbb}$ 

**Figure 1.** Axes definitions used in the present work for dideuteromethane (CH<sub>2</sub>D<sub>2</sub>). The unprimed symbols refer to the axis definitions for the  $C_{2\nu}$  symmetry group used in the classification of the vibrational modes. The primed symbols refer to the Cartesian axis definitions of the *I* representation of Watson's *A*-reduced effective Hamiltonian.

(30 cm<sup>-1</sup>) differed from the corresponding potential constant  $C_{sbb}$  (150 cm<sup>-1</sup>) by about a factor of 5, when properly relating potentials and spectra with vibrational variational calculations on accurate potential hypersurfaces (MRD-CI and beyond),<sup>30–34</sup> although from simple perturbation theory they would be equal. While the early variational calculations for methane were still of reduced dimensionality, today fully 9-dimensional vibrational variational variational calculations on global potential hypersurfaces for CH<sub>4</sub> can be considered to be the frontier of such research.<sup>35–45</sup>

In this context, but also because of the importance of methane in many fields of science ranging from reactions kinetics and combustion science to geology, from environmental and planetary science to astrophysics, we have initiated some time ago a detailed study of rovibrational spectra of the methane isotopomer  $CH_2D_2$ with the goal of obtaining an as complete understanding of its vibrational dynamics as possible.<sup>46,47</sup> CH<sub>2</sub>D<sub>2</sub> (Figure 1) is particularly suited for a study of its rovibrational dynamics, as it is the

<sup>&</sup>lt;sup>†</sup> Part of the "Max Wolfsberg Festschrift".

<sup>\*</sup> Corresponding author. ETH Zürich, Laboratorium für Physikalische Chemie, Wolfgang-Pauli-Strasse 10, CH-8093 Zürich, Switzerland. Phone: +41-44-632 44 22. Fax: +41-44-633 15 98. E-mail: martin@quack.ch.

<sup>&</sup>lt;sup>‡</sup> ETH Zürich.

<sup>§</sup> Tomsk State University.

<sup>&</sup>quot;Technische Universität Braunschweig.

TABLE 1: Values of the Fundamental Band Centers of  $CH_2D_2$  (in cm<sup>-1</sup>)<sup>*a*</sup>

|         | - `        | /                           |             |                              |
|---------|------------|-----------------------------|-------------|------------------------------|
| ν       | $\Gamma^b$ | $\nu_0^{ m exp}/ m cm^{-1}$ | ref         | assignment <sup>b</sup>      |
| $\nu_1$ | $A_1$      | 2975.4823                   | [this work] | CH <sub>2</sub> s-stretching |
| $\nu_2$ | $A_1$      | 2203.2171                   | 46, 47, 60  | CD <sub>2</sub> s-stretching |
| $\nu_3$ | $A_1$      | 1435.1346                   | 46, 47, 59  | CH <sub>2</sub> scissoring   |
| $\nu_4$ | $A_1$      | 1033.0534                   | 46, 47, 59  | CD <sub>2</sub> scissoring   |
| $\nu_5$ | $A_2$      | 1331.4087                   | 46, 47      | CH <sub>2</sub> twisting     |
| $\nu_6$ | $B_1$      | 3012.2595                   | [this work] | CH <sub>2</sub> a-stretching |
| $\nu_7$ | $B_1$      | 1091.185                    | 46, 47, 59  | CH <sub>2</sub> rocking      |
| $\nu_8$ | $B_2$      | 2234.6923                   | 46, 47, 60  | CD <sub>2</sub> a-stretching |
| $\nu_9$ | $B_2$      | 1236.2771                   | 46, 47, 59  | CH <sub>2</sub> wagging      |
|         |            |                             |             |                              |

<sup>*a*</sup> See also ref 47 and references cited therein. <sup>*b*</sup> s for symmetric, a for antisymmetric,  $\Gamma$  gives the species of the mode in the point group  $C_{2\nu}$ (see Figure 1).

only nonradioactive asymmetric top isotopomer of methane, where the lowered symmetry places fewer restrictions on the electric dipole transitions and removes complications from degenerate vibrational modes as compared to the more highly symmetric isotopomers of  $C_{3v}$  and  $T_d$  symmetry.

There exists, of course, a substantial body of spectroscopic work on  $CH_2D_2$ . Table 1 summarizes the nine vibrational fundamentals as known today. A total of 22 vibrational bands had been studied at moderate to high resolution prior to the present work, where we reanalyze also three of the previously known bands.<sup>48–60</sup> The farinfrared pure rotational spectrum has also been studied with the main goal of deriving the permanent dipole moment of  $CH_2D_2$ including the answer to the long standing question of its sign.<sup>61,62</sup>

In our two previous papers, we have complemented the lowenergy spectra by observing and analyzing previously undetected, weak, or forbidden transitions for example to levels of  $A_2$  symmetry or weaker overtone and combinations levels.46,47 The goal of the present investigation is to very substantially increase our knowledge of the vibrational spectra and dynamics of CH2D2 to energies extending beyond  $E/hc = 6000 \text{ cm}^{-1}$ . To achieve such a goal, one may distinguish two strategies. The first one would be to systematically study with stepwise increasing energy all the interacting rovibrational polyads or band systems by means of a complete rovibrational analysis of all observable rovibrational transitions up to a given energy. This is an enormous task, which for the parent isotopomer CH<sub>4</sub> has recently been completed just to the octad<sup>63</sup> (i.e., all levels up to about 4600 cm<sup>-1</sup>) and for <sup>13</sup>CH<sub>4</sub> up to the pentad<sup>64</sup> (i.e., 3100 cm<sup>-1</sup>), the octad analysis still being in progress but near to completion. Such complete analyses by necessity can progress only slowly to higher levels of excitation.

A second strategy consists of using spectra taken at low temperatures, which allow for a partial analysis and assignment of spectral lines just for low angular momentum quantum numbers and in particular an assignment and precise measurement of spectral lines belonging to transitions to the J = 0 rotational level of the excited vibrational state considered. In this way, one obtains a precise experimental result for the pure vibrational energy for the state considered. For example, this strategy using supersonic jet cavity ring down spectroscopy has been successful in precisely locating the  $(v_2 + 2v_3)$  level of the icosad of CH<sub>4</sub> at 7510.3378  $cm^{-1}$ , far beyond the range accessible to analysis by the first strategy.65,66 One might also note that even the complete rovibrational analyses of the first strategy, when using room temperature spectra, sometimes cannot directly assign the J = 0 levels, if only lines corresponding to higher rotational quantum numbers are accessible by such spectra. Thus the vibrational band centers derived from such analyses frequently do not include a direct observation of the pure vibrational energy, even though an accurate and complete analysis in general can be relied on in providing also the pure vibrational energy correctly.

We shall discuss and illustrate the power of the present second strategy in assigning vibrational levels directly in the following



**Figure 2.** Diagram of the "density" of "cold" (0 K) vibrational bands of the CH<sub>2</sub>D<sub>2</sub> molecule in the region below 6500 cm<sup>-1</sup> (equivalent to the density of levels, i.e., including "forbidden" bands). The diagram shows the number  $\Delta W(E_i)$  of levels in intervals *i* of 200 cm<sup>-1</sup> for each interval from 0 to 6400 cm<sup>-1</sup>. The sum  $\sum_{i=0}^{N(E)} \Delta W(E_i)$  is the total number of levels W(E) below *E*. I - total number of possible bands (calculated from the data in Table 6). II - number of bands assigned up to now from experimental spectra (see Table 5).

sections. Indeed, we have been able to accurately locate about 70 additional vibrational level positions beyond the ones (22) previously known from many years of research. Figure 2 gives an overview of the number of assigned vibrational levels compared to the total number of expected levels. We shall discuss also the implications of these new results for our understanding of the vibrational dynamics and potential hypersurfaces of methane in the last section of our paper.

#### 2. Experimental

The Fourier transform infrared (FTIR) spectrum of CH<sub>2</sub>D<sub>2</sub> has been recorded in the wavenumber range from 2800 to 6600 cm<sup>-1</sup> with the Zürich FTIR spectrometer Bruker IFS 125 prototype 2001.67,68 The nominal instrumental resolution, defined by 1/MOPD (maximum optical path difference) ranged from 0.0027 to 0.0048 cm<sup>-1</sup> resulting in essentially Doppler limited spectra. The Doppler widths at 78 K range from about 0.004 cm<sup>-1</sup> at 2800 cm<sup>-1</sup> to  $0.0096 \text{ cm}^{-1}$  at 6600 cm<sup>-1</sup>. About 100 spectra were typically coadded in each spectral region. A newly built enclosive flow cooling cell based on White optics and embedded in a Dewar was used for recording the cold spectra<sup>69</sup> similar to the design described in refs 70-72. The cooling cell was connected via an evacuated transfer optics chamber to the external parallel port of our spectrometer.<sup>69</sup> It was used here in the static mode (without permanent flow). Optical path lengths ranging from 5 to 10 m were used for the measurements. More details of the experimental setup and procedures can be found in ref 69. A preliminary report of the present work has already been provided in ref 73.

Most of the  $CH_2D_2$  spectra were taken at 78 K. The total sample pressure of a mixture of  $CH_2D_2$  and He in the cell ranged from 2.8 to 3.5 mbar in most cases. In addition, spectra with a pressure of 0.5 mbar were recorded to measure the strong lines without saturation. Pressure broadening can be neglected under these conditions. All spectra were self-apodized. The aperture used was 1 mm. Table 2 summarizes the experimental parameters. The spectra were calibrated with OCS at room temperature (2900 to 3600 cm<sup>-1</sup>)<sup>74</sup> and with  ${}^{12}CH_4$  from 3000 to 6000 cm<sup>-1.75</sup> The  $CH_2D_2$  sample was purchased from Cambridge

TABLE 2: Experimental Setup for the Regions 2800–6600 cm<sup>-1</sup> of the Infrared Spectrum of CH<sub>2</sub>D<sub>2</sub>

| region/<br>cm <sup>-1</sup> | resolution/<br>cm <sup>-1</sup> | windows | source   | detector | beamsplitter     | opt. filter/<br>cm <sup>-1</sup> | aperture/<br>mm | ν <sub>mirror</sub> /<br>(kHz) | electr. filter/<br>cm <sup>-1</sup> | calib. gas        |
|-----------------------------|---------------------------------|---------|----------|----------|------------------|----------------------------------|-----------------|--------------------------------|-------------------------------------|-------------------|
| 2800-3700                   | 0.0027                          | KBr     | Globar   | InSb     | CaF <sub>2</sub> | 3000-3600                        | 1.0             | 40                             | 2370-3950                           | OCS <sup>74</sup> |
| 3200-4600                   | 0.0033                          | KBr     | Tungsten | InSb     | $CaF_2$          | 3350-4450                        | 1.0             | 40                             | 2765-5529                           | CH4 <sup>75</sup> |
| 4200-5600                   | 0.0040                          | KBr     | Tungsten | InSb     | $CaF_2$          | 4350-5500                        | 1.0             | 40                             | 2765-7109                           | CH4 <sup>75</sup> |
| 5200-6400                   | 0.0047                          | KBr     | Tungsten | InSb     | CaF <sub>2</sub> | 5350-6350                        | 1.0             | 42                             | 3950-7109                           | CH4 <sup>75</sup> |

Isotope Laboratories. The identity, chemical, and isotopic purity (specified to be better than 98%) were obvious from the spectra.

The relative wavenumber accuracy of nonblended, unsaturated, and not too weak lines (about 8500 assignments) can be estimated to be better than  $10^{-6}$  cm<sup>-1</sup> in the range from 2800 to 6600 cm<sup>-1</sup>. The absolute wavenumber accuracy depends upon the accuracy of the reference lines used for calibration, which have an uncertainty of about  $10^{-4}$  cm<sup>-1</sup> for the lower wavenumber range and between  $10^{-4}$  and  $10^{-3}$  cm<sup>-1</sup> for the higher wavenumber range extending beyond 6000 cm<sup>-1</sup>.

#### 3. Analysis of the Experimental Spectrum

Figure 3 shows an overview of the experimental FTIR spectrum. As shown above in Figure 2, the density of possible vibrational bands is rapidly increasing with increasing energy. The spectrum is characterized by some strong bands corresponding to first overtone and simple binary combination bands (the total number of this kind of bands allowed in absorption is 37) and further much weaker second overtone and more complex combination bands corresponding to triple excitations (the total number of such infrared bands is 127). The bands which correspond to excitations with four and more vibrational quanta are extremely weak and were not visible in the spectra, as a rule. However, because of some strong resonance interactions even weak third overtone and more complex combination bands can sometimes be identified in the experimental spectrum. In any case, the experimental conditions described in Section 2 allowed us to newly assign 71 vibrational bands which one can compare with the smaller number, 22, of bands studied with high resolution in all previous work together. Transitions with quantum number  $J \le 8$  to 12 for the strong bands and  $J \le 5$  to 6 for the weak bands were assigned in the spectra recorded at a temperature of 78 K.

Figure 4 illustrates the great simplification and improvement of the spectral data obtained in the cold cell at 78 K (upper part) compared to the room temperature spectrum (lower part) in the small spectral range shown around 4441 cm<sup>-1</sup>. At room temperature, one finds many overlapping, blended, and also weak lines. By contrast, in the cold cell spectrum, the lines are well separated and sharp because of the smaller Doppler widths, often with excellent signal-to-noise ratio, about 500:1 for strong lines and 3:1 for the weakest lines. As discussed in the Introduction, the cold cell spectra allowed us to considerably simplify the assignment of spectra and the identification of pure vibrational level energies. This is illustrated by the level scheme in Figure 5, which shows the ground-state level, the excited rotational levels of the vibrational ground-state with J'' = 1, and the possible combinations of  $K''_a$  and  $K''_c$ . These rotational levels form the possible lower levels for selectively assigned transitions connecting to a rotationless upper vibrational level.

In the case when the upper vibrational state is of  $A_1$ -symmetry, one has  $K''_a = K''_c = 1$ . Analogously,  $K''_a = 0$ ,  $K''_c = 1$  applies when the upper vibrational state has the symmetry  $B_2$  or  $K''_a = 1$ ,  $K''_c = 0$  for  $B_1$  upper level symmetry. The transition to an upper vibrational level of  $A_2$  symmetry species is forbidden, and such levels have to be measured by other means.<sup>46,47</sup> It should be mentioned that while all the other upper rovibrational levels of a vibrational level are reached by more than one transition, and thus the identities can be confirmed by the corresponding combination differences, the  $E_{[J'=0,K'_a=0]}$  upper rovibrational level (and as a consequence, the "experimental" value of the band center, as well) can be obtained from only one transition as indicated in Figure 5. Therefore, the problem of a correct search for this selected transition in the experimental spectrum is important. This was done in the following way: Fits of the sets of energies of the type  $E_{[J', K'_a]} = 0, K'_c = J'_1$  (J' = 1, 2, 3, 4,...) have been carried out for all bands studied. This allowed us to predict the position of the  $[J' = 0, K'_a = 0, K'_c = 0](v') \leftarrow [J'' = 1, K''_a, K''_c] (v'')$ transition with an accuracy of about  $0.01-0.06 \text{ cm}^{-1}$ . This accuracy is sufficient to identify beyond doubt the corresponding line in our experimental spectrum.

To illustrate this procedure, Table 3 presents the predicted line positions for the transitions  $[J'=0, K'_a=0, K'_c=0](v') \leftarrow [J''$ = 1,  $K''_{a}$ ,  $K''_{c}$ ](v'' = 0), in comparison with the experimental line positions for 10 of the lower wavenumber bands analyzed. The matching leaves no room for ambiguity. As an additional confirmation of the correctness of this assignment procedure, the "smooth" behavior of the line strengths in the sets of transitions  $[J', K'_a = 0,$  $K'_{c} = J'](v') \leftarrow [J'' = J' + 1, K''_{a} = 0/1, K''_{c} = J' + 1/J'](v'' = 0)$ can be mentioned. Figure 6a, 6b, and 6c give an illustration of the procedure for three bands of different symmetry. One can see very nicely the various assigned transitions of the bands and the convergence to the predicted selected lines marked by the arrows. These lines provide thus the transitions to the rotationless upper vibrational levels, and by adding the rotational energies of the lower level of the transition one obtains as indicated in Table 3 finally the upper vibrational energy  $E'_{\rm vib}$ .

The lower level rotational energies in Figure 5 cannot be obtained from the pure rotational transitions or from simple combination differences, as the corresponding transitions are forbidden by symmetry in  $C_{2v}$ . However, we have reanalyzed numerous ground-state combination differences in terms of rotational energies for low *J* levels and derived the relevant J = 1 level energies in Figure 5 from the appropriate fit of effective rotational Hamiltonian constants to the spectral data. This extrapolation to J = 1 level energies provides the data for  $E''_{rot}$  in Table 3 with an accuracy of at least five significant digits. Therefore, the remaining uncertainty does not affect the upper vibrational level energies determined by adding the transition energy to the lower level rotational energy. Table 4 gives the corresponding rotational parameters.

In total, more than 8500 rovibrational transitions were assigned to 71 excited vibrational levels. More than 8400 of these transitions were confirmed by combination differences. The list of experimental band centers is given in Table 5 together with all calculated levels as described in Section 4 in detail. When four digits after the decimal point are given for the experimental result, then the band center was derived directly by the procedure described above. These data should have an uncertainty limited only by the calibration and peak finding uncertainties, which are in the range between 0.0001 and 0.001 cm<sup>-1</sup> (see Section 2). The complete listing of all assigned rovibrational transitions will be reported in conjunction with a partially complete rovibrational analysis including interactions for high J levels.<sup>76</sup>

In a few cases, we were able to estimate the band center only by a less accurate fit procedure. For these four levels, we give only one digit after the decimal point, and we did not use those data in



**Figure 3.** Survey spectrum of  $CH_2D_2$  in the region of 2800-6500 cm<sup>-1</sup>. Experimental conditions are presented in Table 1. The parts a, b, c, d cover the range from 2800 to 6400 cm<sup>-1</sup>. The decadic absorbance  $lg(I_0/I)$  is given on the ordinate.



**Figure 4.** Small portion of the spectrum of the  $CH_2D_2$  molecule in the region of the  $\nu_3 + \nu_6$  band. Upper trace: Bruker IFS 125 prototype (ZP 2001) spectrum at 78 K. Lower trace: Bomem DA002 spectrum at 293 K. Both spectra are essentially Doppler limited.



**Figure 5.** Level scheme explaining the procedure to derive the (J' = 0, v') level energy for an excited level v' from experimental transition wavenumbers and ground-state rotational energies. All transition wavenumbers and term values are given in cm<sup>-1</sup>. *a* stands for *a*-type transition, *b* for *b*-type, *c* for *c*-type.

the final fits of data as we cannot specify a definitive uncertainty estimate. These four band centers refer to the  $\nu_4 + \nu_7 + \nu_9$ ,  $\nu_3 + \nu_7 + \nu_9$ ,  $\nu_5 + \nu_6$ , and  $\nu_5 + \nu_8$  bands. The first two correspond to transitions where the upper vibrational state is of  $A_2$  symmetry, and as a consequence, they are "forbidden" in absorption. They appear in the spectrum only for J > 0 because of strong resonance interactions with neighboring states showing allowed infrared transitions. This circumstance leads to the absence of the transition to the  $[J' = 0, K'_a = 0, K'_c = 0]$  upper rovibrational state. Thus, the corresponding band centers cannot be derived from the experimental data and can only be obtained from the fit. Furthermore, also in the cases of the  $\nu_5 + \nu_6$  and  $\nu_5 + \nu_8$  bands, which are allowed, but very weak, the P-type transitions  $[J' = 0, K'_a =$ 

TABLE 3: Line Positions and Levels for the Transitions  $[J' = 0, K'_a = 0, K'_c = 0](v') \leftarrow [J'' = 1, K''_a, K''_c](v'' = 0)$  for Some Absorption Bands of CH<sub>2</sub>D<sub>2</sub> (in cm<sup>-1</sup>)

| band                   | $(0 \leftarrow 1)^{\text{predict.}}$ | (0 ← 1) <sup>exp.</sup> | $J'' K''_a K''_c$ | E"rot./<br>hc | E' <sub>vib.</sub> /<br>hc |
|------------------------|--------------------------------------|-------------------------|-------------------|---------------|----------------------------|
| $2\nu_3 (A_1)$         | 2848.315                             | 2848.3122               | 111               | 7.3528        | 2855.6650                  |
| $\nu_1 (A_1)$          | 2968.130                             | 2968.1295               | 111               | 7.3528        | 2975.4823                  |
| $\nu_{6}(B_{1})$       | 3004.450                             | 3004.4509               | 110               | 7.8086        | 3012.2595                  |
| $3\nu_4 (A_1)$         | 3058.782                             | 3058.7813               | 111               | 7.3528        | 3066.1341                  |
| $2\nu_4 + \nu_7 (B_1)$ | 3133.876                             | 3133.8177               | 110               | 7.8086        | 3141.6263                  |
| $\nu_4 + 2\nu_7 (A_1)$ | 3173.783                             | 3173.7380               | 111               | 7.3528        | 3181.0908                  |
| $\nu_2 + \nu_7 (B_1)$  | 3202.457                             | 3202.4589               | 110               | 7.8086        | 3210.2675                  |
| $\nu_2 + \nu_4 (A_1)$  | 3226.329                             | 3226.3281               | 111               | 7.3528        | 3233.6809                  |
| $\nu_4 + \nu_8 (B_2)$  | 3237.187                             | 3237.1889               | 101               | 6.5559        | 3243.7448                  |
| $3\nu_7 (B_1)$         | 3298.956                             | 3298.9560               | 110               | 7.8086        | 3306.7646                  |

 $0, K'_c = 0](\nu') \leftarrow [J'' = 1, K''_a, K''_c](\nu'' = 0)$  could not be identified beyond doubt in the spectrum. Therefore, the centers of the  $\nu_5 + \nu_6$  and  $\nu_5 + \nu_8$  bands were also not derived from an experimental transition but were estimated from the fit.

The level assignment in the first column of Table 5, given in terms of the excitation of the normal modes, has, of course, limited significance when there is extensive state mixing particularly at higher excitations. The symmetry assignment in  $C_{2v}$  (see Figure 1) is, however, robust.

One can see from Table 5 that below about  $4500 \text{ cm}^{-1}$  the large majority of vibrational levels could actually be observed, whereas the fraction of experimentally assigned levels rapidly decreases above  $4500 \text{ cm}^{-1}$ , many bands being too weak for detection under our conditions (see also Figure 2).

The predictions derived in the following section and summarized in Table 5 as well might help to assign further levels in spectra taken under appropriate conditions.

# 4. Theoretical Background, Symmetry, Hamiltonian Model, and Vibrational Assignment

CH<sub>2</sub>D<sub>2</sub> is an asymmetric top molecule with  $C_{2\nu}$  point group symmetry (see Figure 1). Its nine vibrational modes  $q_K$  have the symmetry species as given for the corresponding fundamentals in Table 1. Similarly, the vibrational wave functions ( $\nu_1$ ,  $\nu_2$ ,  $\nu_3$ ,  $\nu_4$ ,  $\nu_5$ ,  $\nu_6$ ,  $\nu_7$ ,  $\nu_8$ ,  $\nu_9$ ), where the symbol  $\nu_i$  denotes the number of quanta in the *i*-th vibrational mode, belong to one of the four symmetry species  $A_1$ ,  $A_2$ ,  $B_1$ , or  $B_2$ . The complete permutation inversion group for CH<sub>2</sub>D<sub>2</sub> is  $S_{2,2}^*$  of order 8;<sup>77,78</sup> however, tunneling is not observed due to the high barrier,<sup>79</sup> and the induced representation  $\Gamma(MS_4 \sim C_{2\nu})$  ↑  $\Gamma(S_{2,2}^*)$  indicates that both positive and negative parities arise for all sublevels in contrast to CH<sub>4</sub> and CH<sub>3</sub>D. More details of symmetry and nuclear spin statistics are discussed in refs 76 and 80.

As shown in Figure 2, one expects a rapid increase of the density of vibrational states with increasing wavenumber. Furthermore, the infrared spectrum is complicated by the presence of numerous and strong resonance interactions between many vibrational states. As a consequence, even a preliminary analysis of the infrared spectra of the  $CH_2D_2$  molecule requires consideration of the relevant resonance interactions both of the Fermi and Darling–Dennison as well as of the Coriolis types. In accordance with the general symmetry properties, such Hamiltonians have the following form<sup>4–11,47,59</sup>

$$H^{\nu.-r.} = \sum_{\nu,\tilde{\nu}} |\nu\rangle \langle \tilde{\nu} | H_{\nu\tilde{\nu}}$$
(1)

where the summation extends over all interacting vibrational states. The diagonal operators  $H_{vv}$  describe unperturbed rotational structures of the vibrational states involved. The nondiagonal operators  $H_{v\bar{v}}$ ,  $(v \neq \tilde{v})$  describe different kinds of resonance interactions between the states  $|v\rangle$  and  $|\tilde{v}\rangle$ . The diagonal block operators have the same form for all the

vibrational states involved (they are so-called Watson Hamiltonians, here in the A-reduction and  $I^r$  representation<sup>81,82</sup>)

$$\begin{split} H_{vv} &= E^{v} + \left[ A^{v} - \frac{1}{2} (B^{v} + C^{v}) \right] J_{z}^{2} + \frac{1}{2} (B^{v} + C^{v}) J^{2} + \frac{1}{2} (B^{v} - C^{v}) J_{xy}^{2} - \Delta_{K}^{v} J_{z}^{4} - \Delta_{JK}^{v} J_{z}^{2} J^{2} - \Delta_{J}^{v} J^{4} - \delta_{K}^{v} [J_{z}^{2}, J_{xy}^{2}] - 2\delta_{J}^{v} J^{2} J_{xy}^{2} + \dots \end{split}$$

$$(2)$$

where  $J_{\alpha}$  ( $\alpha = x, y, z$ ) are the components of the angular momentum operator defined in the molecule-fixed coordinate system;  $J_{xy}^2 = J_x^2 - J_y^2$ ;  $A^v$ ,  $B^v$ , and  $C^v$  are the effective rotational constants connected with the vibrational states v; and the other parameters are the different centrifugal distortion coefficients.

We can distinguish between four types of coupling operators  $H_{v\bar{v}}$  ( $v \neq \tilde{v}$ ) corresponding to the four different types of resonance interactions which can occur in  $C_{2v}$  asymmetric top molecules. If the product  $\Gamma = \Gamma^v \otimes \Gamma^{\bar{v}}$  of the symmetry species of the states v and  $\tilde{v}$  is equal to  $A_1$  (i.e.,  $\Gamma^v = \Gamma^{\bar{v}}$ ), then the states v and  $\tilde{v}$  are connected by an anharmonic resonance interaction, and the corresponding interaction operator has the form

$$H_{v\bar{v}} = {}^{v\bar{v}}F_0 + {}^{v\bar{v}}F_K J_z^2 + {}^{v\bar{v}}F_J J^2 + \dots + {}^{v\bar{v}}F_{xy} (J_x^2 - J_y^2) + \dots$$
(3)

If the product is  $\Gamma = B_1$ , then the states v and  $\tilde{v}$  are connected by a Coriolis resonance interaction of the form

$$H_{v\tilde{v}} = iJ_{z}H_{v\tilde{v}}^{(1)} + \{J_{x}, J_{y}\}_{+}H_{v\tilde{v}}^{(2)} + H_{v\tilde{v}}^{(2)}\{J_{x}, J_{y}\}_{+} + \dots$$
(4)

When  $\Gamma = B_2$ , the following Coriolis interaction is allowed

$$H_{v\bar{v}} = iJ_{y}H_{v\bar{v}}^{(1)} + H_{v\bar{v}}^{(1)}iJ_{y} + \{J_{x}, J_{z}\}_{+}H_{v\bar{v}}^{(2)} + H_{v\bar{v}}^{(2)}\{J_{x}, J_{z}\}_{+} + \dots (5)$$
  
Finally, when  $\Gamma = A_{2}$ , a Coriolis interaction of the following type is possible

$$H_{v\bar{v}} = iJ_{x}H_{v\bar{v}}^{(1)} + H_{v\bar{v}}^{(1)}iJ_{x} + \{J_{y}, J_{z}\}_{+}H_{v\bar{v}}^{(2)} + H_{v\bar{v}}^{(2)}\{J_{y}, J_{z}\}_{+}\dots$$
(6)

The operators  $H_{vv}^{(i)}$ , i = 1, 2, 3,... in eqs 4–6 have the form

$$H_{\nu\bar{\nu}}^{(i)} = \frac{1}{2}{}^{\nu\bar{\nu}}C^{i} + {}^{\nu\bar{\nu}}C^{i}_{K}J^{2}_{z} + \frac{1}{2}{}^{\nu\bar{\nu}}C^{i}_{J}J^{2} + \dots$$
(7)

These equations are used in the rovibrational analysis, which was necessary in the assignment procedure.

The information derived from the rovibrational analysis providing effective Hamiltonian parameters can be considered to be the first step toward the determination of an empirical multidimensional potential hypersurface of methane. The small experimental uncertainty (estimated to be between 0.0001 and 0.001 cm<sup>-1</sup> for different bands and different spectral regions and always below 0.01 cm<sup>-1</sup>) of the numerous band centers allowed us to correctly determine the values of the harmonic wavenumbers  $\omega_{k}$ , anharmonic coefficients  $x_{kj}$ , and of some resonance interaction parameters. A total of 74 band centers derived in the present contribution (71 new and 3 redetermined for the bands  $2\nu_3$ ,  $\nu_1$ , and  $\nu_6$ ) were added to the 19 band centers known previously from refs 46, 47, 57, 59, and 60and fitted with the simple model of a vibrational Hamiltonian matrix which takes into account some relevant resonance interactions

$$H^{\nu} = \sum_{\nu,\tilde{\nu}} |\nu\rangle \langle \tilde{\nu} | h_{\nu\tilde{\nu}}$$
(8)

Here the summation includes all vibrational states studied. The diagonal elements of the matrix have the form

$$h_{vv} = \sum_{k} \omega_{k} \left( v_{k} + \frac{1}{2} \right) + \sum_{k,m \ge k} x_{km} \left( v_{k} + \frac{1}{2} \right) \left( v_{m} + \frac{1}{2} \right) + \sum_{k,m \ge k,n \ge m} y_{kmn} \left( v_{k} + \frac{1}{2} \right) \left( v_{m} + \frac{1}{2} \right) \left( v_{n} + \frac{1}{2} \right)$$
(9)

Concerning resonance interaction matrix elements, it was found that the following types are important for the current  $J'=JK'_a=0K'_c=J \longleftarrow J''=J+1K''_a=0K''_c=J+1$ 



**Figure 6.** Set of transitions  $[J', K'_a = 0, K'_c = J'](v') \leftarrow [J'' = J' + 1, K''_a = 0/1, K''_c = J' + 1/J'](v'' = 0)$  for the bands of different symmetry: (a) *a*-type transitions for the  $B_2$ -symmetry upper vibrational state (the lower is the ground vibrational state of the  $A_1$ -symmetry); (b) *b*-type transitions for the  $A_1$ -symmetry upper state; (c) *c*-type transitions for the  $B_1$ -symmetry upper state. The first line of progressions, which corresponds the transitions with J' = 0, can be recognized beyond doubt. Alternation of the stronger and weaker lines in the set is caused by the nuclear spin statistic of rotational levels. The lower parts of the Figures 6a-6c show in more detail the sections of the spectra close to the transition  $[J' = 0, K'_a = 0, K'_c = 0](v') \leftarrow [J'' = 1, K''_a = 0/1, K''_c = 1/0](v')$ . Assigned lines of some other bands also indicated.

TABLE 4: Ground State Rotational Parameters (in cm<sup>-1</sup>) for CH<sub>2</sub>D<sub>2</sub> Obtained from Ground-State Combination Differences (GSCD) of the Present Study

| parameter             | present study              | from ref 47 |
|-----------------------|----------------------------|-------------|
| 1                     | 2                          | 3           |
| Α                     | 4.3028927(25) <sup>c</sup> | 4.3028950   |
| В                     | 3.5059459(24)              | 3.5059379   |
| С                     | 3.0500947(22)              | 3.0500936   |
| $\Delta_{K}/10^{-4}$  | 0.74406(150)               | 0.741677    |
| $\Delta_{JK}/10^{-4}$ | -0.15861(147)              | -0.153933   |
| $\Delta_{J}/10^{-4}$  | 0.470106(405)              | 0.468558    |
| $\delta_{K}/10^{-4}$  | -0.15729(167)              | -0.158331   |
| $\delta_{J}/10^{-4}$  | 0.090279(252)              | 0.089864    |
| $H_{K}/10^{-8}$       | $-0.104214^{b}$            | -0.104214   |
| $H_{KI}/10^{-8}$      | $0.94465^{b}$              | 0.94465     |
| $H_{JK}/10^{-8}$      | $-0.34124^{b}$             | -0.34124    |
| $H_{J}/10^{-8}$       | $0.181618^{b}$             | 0.181618    |
| $h_{\rm K}/10^{-8}$   | $0.34986^{b}$              | 0.34986     |
| $h_{JK}/10^{-8}$      | $-0.25873^{b}$             | -0.25873    |
| $h_J / 10^{-8}$       | $0.069674^{b}$             | 0.069674    |
| $N^a$                 | 134                        | 134         |
| $n^a$                 | 8                          |             |
| $d_{ m rms}$          | 0.000066                   | 0.000071    |

<sup>*a*</sup> Here *N* is the number of GSCD used in the fit; *n* is the number of varied parameters. <sup>*b*</sup> Constrained to the value from column 3. <sup>*c*</sup> Uncertainties are given in parentheses in terms of one standard deviation in units of the last digits given.

problem and should be taken into account in defining the parameters of the effective Hamiltonian to be reported below.

1. (first type)

$$h_{v\bar{v}} = \frac{\gamma_{3499}}{8} (2v_3 \pm 1 \pm 1)^{1/2} (2v_4 \pm 1 \pm 1)^{1/2} (v_9 \pm 1 \pm 1)^{1/2} (v_9 \pm 1)^{1/2} = 10^{1/2} (10)$$

if  $|v\rangle = (..., v_3, v_4,..., v_9)$  and  $|\tilde{v}\rangle = (..., v_3 \pm 1, v_4 \pm 1,..., v_9 \mp 2);$ 

2. (second type)

$$h_{v\bar{v}} = \frac{1}{4} (2v_2 \pm 1 + 1)^{1/2} (v_7 \mp 1 + 1)^{1/2} (v_7 \mp 1)^{1/2} (k_{277} + \delta_{277} (2v_7 \mp 2 + 1))$$
(11)

if  $|v\rangle = (..., v_2, ..., v_7, ...)$  and  $|\tilde{v}\rangle = (..., v_2 \pm 1, ..., v_7 \mp 2, ...);$ 3. (third type)

$$h_{\nu\bar{\nu}} = \frac{k_{489}}{8} (2\nu_8 \pm 1 + 1)^{1/2} (2\nu_4 \mp 1 + 1)^{1/2} (2\nu_9 \mp 1 + 1)^{1/2} (12)$$

if  $|v\rangle = (..., v_4, ..., v_8, v_9)$  and  $|\tilde{v}\rangle = (..., v_4 \mp 1, ..., v_8 \pm 1, v_9 \mp 1);$ 4. (fourth type)

$$h_{v\bar{v}} = \frac{k_{133}}{4} (2v_1 \pm 1 + 1)^{1/2} (v_3 \mp 1 + 1)^{1/2} (v_3 \mp 1)^{1/2}$$
(13)

if  $|v\rangle = (v_1,..., v_3,...)$  and  $|\tilde{v}\rangle = (v_1 \pm 1,..., v_3 \mp 2,...);$ 5. (fifth type)

$$h_{v\bar{v}} = \frac{\gamma_{3759}}{16} (2v_3 \pm 1 + 1)^{1/2} (2v_7 \pm 1 + 1)^{1/2} (2v_5 \mp 1 + 1)^{1/2} (2v_9 \mp 1 + 1)^{1/2}$$
(14)

if  $|v\rangle = (..., v_3, ..., v_5, ..., v_7, ..., v_9)$  and  $|\tilde{v}\rangle = (..., v_3 \pm 1, ..., v_5 \mp 2, ..., v_7 \pm 1, ..., v_9 \mp 1);$ 

6. (sixth type)

$$h_{v\bar{v}} = \frac{\gamma_{1166}}{4} (v_1 \pm 1 + 1)^{1/2} (v_1 \pm 1)^{1/2} (v_6 \mp 1 + 1)^{1/2} (v_6 \mp 1)^{1/2}$$
(15)

if  $|v\rangle = (v_1, ..., v_6, ...)$  and  $|\tilde{v}\rangle = (v_1 \pm 2, ..., v_6 \mp 2, ...).$ 

Those quantum numbers  $v_i$ , which are not mentioned in eqs 10–15, have the same values in both of the states  $|v\rangle$  and  $|\tilde{v}\rangle$ .

#### 5. Results of the Final Analysis and Discussion

In the final calculation, a set of 47 parameters were adjusted in a least-squares analysis. The values obtained are presented in columns 2 of Tables 6 and 7 together with their statistical confidence intervals (1 $\sigma$ ). The parameters reproduce the experimental values of the band centers used in the fit with a root-meansquare deviation  $d_{\rm rms} = 0.67$  cm<sup>-1</sup>. Columns 3 of Tables 6 and 7 present, for comparison, also the corresponding ab initio data from ref 83. In column 3 of Table 5, the values of the band centers calculated with the parameters from columns 2 of Tables 6 and 7 are listed. There is in general excellent agreement between the experimental and calculated values of the band centers. The root-meansquare deviation of the fit is 0.67 cm<sup>-1</sup>, with few differences being larger than 1 cm<sup>-1</sup> and none larger than 2 cm<sup>-1</sup> for the 89 fitted bands.

Some points are noteworthy in the context of the fit. First, in the fit procedure we did not adjust the harmonic wavenumbers  $\omega_k$  (k = 1,..., 9), but instead we determined the parameters  $F_{ij}$  of the harmonic force field as defined by<sup>3,35,84</sup>

$$2V^{(2)} = F_{11}S_1^2 + F_{22}(S_{2a}^2 + S_{2b}^2) + F_{33}(S_{3x}^2 + S_{3y}^2 + S_{3z}^2) + 2F_{34}(S_{3x}S_{4x} + S_{3y}S_{4y} + S_{3z}S_{4z}) + F_{44}(S_{4x}^2 + S_{4y}^2 + S_{4z}^2)$$
(16)

for methane, because for a given  $r_e$ -structure<sup>46,47</sup> the nine harmonic wavenumbers  $\omega_k$  are exactly described by the five force constants  $F_{ij}$  of eq 16. This smaller set of parameters was thus used in the fit.

Second, some of the  $x_{kl}$  and  $F_{ij}$  turn out to be unstable in the fit to the set of available experimental band centers. The confidence intervals of some parameters were found to be comparable with or even larger than the absolute values of parameters themselves. These parameters were therefore constrained to the values predicted on the basis of a preliminary estimate of the "experimental" potential energy surface of the methane molecule, refs 80 and 83, and were not fitted. The corresponding values are given in Tables 6 and 7 without confidence intervals.

The centers of the four bands  $\nu_4 + \nu_7 + \nu_9$ ,  $\nu_3 + \nu_7 + \nu_9$ ,  $\nu_5 + \nu_7 + \nu_9$ ,  $\nu_5 + \nu_7 + \nu_9$ ,  $\nu_7 + \nu_9$ ,  $\nu_8 + \nu_9$ ,  $\nu$  $\nu_6$ , and  $\nu_5 + \nu_8$  were not included in the fit as discussed above. These values as given in column 3 of Table 5 are thus predictions, showing a good predictive power of the simple model at least for these bands. One can compare also with the band centers predicted using the parameters from the ab initio calculations of ref 83. Here many of the predicted values are quite different from the experimental result and from our model. The discrepancies frequently exceed 20 cm<sup>-1</sup> and more. When one looks more closely into the details of the discrepancies, one finds that while the CH-stretching fundamentals  $\nu_1$  and  $\nu_6$  are rather well described by the ab initio theory of 83 the CD-stretching fundamentals  $\nu_2$  and  $\nu_8$  show discrepancies on the order of 10-20 cm<sup>-1</sup>. It is thus not surprising that more highly excited levels involving CD-stretching excitations are incorrectly predicted by ab initio theory. The discrepancies do obviously not arise from the harmonic force field, as experimental and theoretical harmonic wavenumbers in Table 7 agree well. Indeed, our experimental results for the harmonic frequencies agree much better with the ab initio theory of Lee, Martin, and Taylor<sup>83</sup> than with the experimental result of Gray and Robiette,<sup>85</sup> which for a long time constituted the best experimental result but is now

TABLE 5: Values of the Band Centers of the  $CH_2D_2$  Molecule (in  $cm^{-1}$ )<sup>*a*</sup>

| band                                                                  | center <sup>83</sup>          | center, calc.                 | center, exp.           | ref      | band                                                         | center <sup>83</sup>          | center, calc.                 | center, exp.        | ref      |
|-----------------------------------------------------------------------|-------------------------------|-------------------------------|------------------------|----------|--------------------------------------------------------------|-------------------------------|-------------------------------|---------------------|----------|
| 1                                                                     | 2                             | 3                             | 4                      | 5        | 1                                                            | 2                             | 3                             | 4                   | 5        |
| $A_4, A_1$                                                            | 1033.89                       | 1032.18                       | 1033.053               | 59       | $\nu_3 + \nu_4 + \nu_9, B_2$                                 | 3702.14                       | 3718.76                       | 3719.5909           | tw       |
| $(7, B_1)$                                                            | 1093.49                       | 1090.33                       | 1091.185               | 59       | $2\nu_5 + \nu_7, B_1$                                        | 3751.29                       | 3748.78                       | 3748.3253           | tw       |
| $B_{9}, B_{2}$                                                        | 1235.31                       | 1236.87                       | 1236.277               | 59       | $\nu_3 + \nu_7 + \nu_9, A_2$                                 | 3761.25                       | 3749.11                       | 3749.0 <sup>b</sup> | tw       |
| $5, A_2$                                                              | 1330.73                       | 1331.49                       | 1331.409               | 47       | $\nu_5 + 2\nu_9, A_2$                                        | 3775.14                       | 3781.97                       |                     |          |
| $_{3}, A_{1}$                                                         | 1435.72                       | 1434.84                       | 1435.135               | 59       | $\nu_3 + \nu_4 + \nu_5, A_2$                                 | 3798.88                       | 3798.88                       |                     |          |
| $v_4, A_1$                                                            | 2058.80                       | 2053.94                       | 2054.163               | 60       | $\nu_3 + \nu_5 + \nu_7, B_2$                                 | 3852.36                       | 3842.95                       | 3842.4298           | tw       |
| $\nu_4 + \nu_7, B_1$                                                  | 2128.11                       | 2121.63                       | 2124.678               | 60       | $2\nu_3 + \nu_4, A_1$                                        | 3888.82                       | 3880.88                       | 3881.0299           | tw       |
| $A_{2}, A_{1}$                                                        | 2167.65                       | 2145.76                       | 2145.692               | 60       | $2\nu_5 + \nu_9, B_2$                                        | 3874.83                       | 3881.55                       | 3882.0088           | tw       |
| $\nu_7, A_1$                                                          | 2183.22                       | 2203.39                       | 2203.217               | 60       | $\nu_3 + 2\nu_9, A_1$                                        | 3898.96                       | 3900.47                       | 5002.0000           |          |
| $B_8, B_2$                                                            | 2246.64                       | 2235.53                       | 2234.692               | 60       | $2\nu_3 + \nu_7, B_1$                                        | 3936.44                       | 3928.25                       | 3928.0540           | tw       |
| $B_{4}^{8}$ , $B_{2}^{0}$                                             | 2267.29                       | 2285.55                       | 2285.977               | 60       | $3\nu_5, A_2$                                                | 3978.91                       | 3978.59                       | 5720.0540           | L VV     |
| $v_7 + v_9, A_2$                                                      | 2332.39                       | 2329.66                       | 2329.698               | 47       | $v_3 + v_5 + v_9, B_1$                                       | 3993.23                       | 3995.88                       | 3996.0063           | tw       |
| $\mu_4 + \nu_5, A_2$                                                  | 2365.13                       | 2365.14                       | 2329.090               |          | $v_1 + v_4, A_1$                                             | 4003.91                       | 4005.23                       | 4005.6345           | tw       |
| $_{5}^{4} + \nu_{7}^{5}, B_{2}^{7}$                                   | 2424.60                       | 2422.20                       | 2422.025               | 46       | $v_4 + v_6, B_1$                                             | 4040.50                       | 4043.07                       | 4042.5767           | tw       |
| $v_{9}, A_{1}$                                                        | 2461.92                       | 2459.14                       | 2458.794               | 46       | $v_4 + v_6, B_1$<br>$v_1 + v_7, B_1$                         | 4056.77                       | 4057.95                       | 4057.5764           | tw       |
| $\nu_{3} + \nu_{4}, A_{1}$                                            | 2468.09                       | 2469.13                       | 2469.201               | 46       | $4\nu_4, A_1$                                                | 4081.66                       | 4066.23                       | +057.570+           | L VV     |
| $_{3}^{3} + \nu_{4}, B_{1}^{3}$<br>$_{3} + \nu_{7}, B_{1}^{3}$        | 2521.70                       | 2515.49                       | 2515.449               | 46       | $v_{6} + v_{7}, A_{1}$                                       | 4090.24                       | 4091.29                       | 4092.0424           | tw       |
|                                                                       | 2521.70                       | 2561.06                       | 2560.547               | 40<br>46 |                                                              | 4090.24 4091.88               | 4091.29                       | 4092.0424           | ιw       |
| $\nu_5 + \nu_9, B_1$                                                  |                               | 2657.69                       |                        |          | $\nu_3 + 2\nu_5, A_1$                                        |                               |                               | 4091.0094           |          |
| $\nu_5, A_1$                                                          | 2657.04                       |                               | 2658.335               | 57       | $2\nu_3 + \nu_9, B_2$                                        | 4094.63                       | 4091.90                       | 4091.0094           | tw       |
| $_{3} + \nu_{9}, B_{2}$                                               | 2671.70                       | 2671.53                       | 2671.684               | 57       | $3\nu_4 + \nu_7, B_1$                                        | 4170.40                       | 4153.01                       |                     |          |
| $_{3} + \nu_{5}, A_{2}$                                               | 2766.02                       | 2766.89                       | 2055 6650              | 4        | $2\nu_3 + \nu_5, A_2$                                        | 4187.84                       | 4185.61                       | 4107 2202           |          |
| $\nu_3, A_1$                                                          | 2858.01                       | 2855.40                       | 2855.6650              | tw       | $\nu_2 + 2\nu_4, A_1$                                        | 4228.15                       | 4197.33                       | 4197.2292           | tw       |
| $_{1}, A_{1}$                                                         | 2972.07                       | 2975.51                       | 2975.4823              | tw       | $\nu_1 + \nu_9, B_2$                                         | 4201.24                       | 4211.77                       |                     |          |
| $_{6}, B_{1}$                                                         | 3008.02                       | 3012.03                       | 3012.2595              | tw       | $\nu_6 + \nu_9, A_2$                                         | 4232.52                       | 4236.17                       |                     |          |
| $\nu_4, A_1$                                                          | 3074.72                       | 3065.29                       | 3066.1341              | tw       | $\nu_2 + \nu_4 + \nu_7, B_1$                                 | 4288.60                       | 4240.96                       |                     |          |
| $\nu_4 + \nu_7, B_1$                                                  | 3153.74                       | 3142.53                       | 3141.6263              | tw       | $2\nu_4 + \nu_8, B_2$                                        | 4274.20                       | 4242.94                       | 4243.9468           | tw       |
| $_{2} + \nu_{4}, A_{1}$                                               | 3202.39                       | 3182.76                       | 3183.6831              | tw       | $2\nu_4 + 2\nu_7, A_1$                                       | 4244.93                       | 4255.09                       |                     |          |
| $_{2} + \nu_{7}, B_{1}$                                               | 3253.12                       | 3210.87                       | 3210.2675              | tw       | $3\nu_3, A_1$                                                | 4307.05                       | 4262.77                       | 4263.0639           | tw       |
| $_{4}+2\nu_{7},A_{1}$                                                 | 3253.13                       | 3234.44                       | 3233.6809              | tw       | $2\nu_2, A_1$                                                | 4266.81                       | 4263.02                       | 4263.2818           | tw       |
| $\nu_4 + \nu_9, B_2$                                                  | 3264.92                       | 3243.30                       | 3243.7448              | tw       | $\nu_1 + \nu_5, A_2$                                         | 4291.05                       | 4295.64                       |                     |          |
| $\nu_7, B_1$                                                          | 3269.19                       | 3306.81                       | 3306.7646              | tw       | $\nu_2 + \nu_4 + \nu_9, B_2$                                 | 4431.45                       | 4328.82                       | 4327.2766           | tw       |
| $\mu_4 + \nu_8, B_2$                                                  | 3290.29                       | 3313.54                       | 3313.6709              | tw       | $\nu_4 + \nu_7 + \nu_8, A_2$                                 | 4352.13                       | 4328.92                       |                     |          |
| $v_7 + v_8, A_2$                                                      | 3333.13                       | 3320.80                       |                        |          | $\nu_2 + 2\nu_7, A_1$                                        | 4334.84                       | 4331.53                       |                     |          |
| $_4 + \nu_7 + \nu_9, A_2$                                             | 3365.10                       | 3374.53                       | $3375.9^{b}$           | tw       | $\nu_5 + \nu_6, B_2$                                         | 4325.88                       | 4331.60                       | $4332.0^{b}$        | tw       |
| $\nu_2 + \nu_9, B_2$                                                  | 3398.63                       | 3380.82                       | 3381.4722              | tw       | $\nu_4 + 3\nu_7, B_1$                                        | 4305.27                       | 4337.04                       |                     |          |
| $\nu_4 + \nu_5, A_2$                                                  | 3390.55                       | 3388.37                       |                        |          | $\nu_2 + \nu_8, B_2$                                         | 4354.57                       | 4348.15                       | 4348.1006           | tw       |
| $\nu_7 + \nu_9, B_2$                                                  | 3425.71                       | 3439.33                       | 3439.4943              | tw       | $3\nu_4 + \nu_5, A_2$                                        | 4407.00                       | 4401.05                       |                     |          |
| $V_4 + 2\nu_9, A_1$                                                   | 3466.34                       | 3451.08                       | 3449.1771              | tw       | $2\nu_4 + \nu_7 + \nu_9, A_2$                                | 4388.82                       | 4401.57                       |                     |          |
| $\nu_4 + \nu_5 + \nu_7, B_2$                                          | 3459.73                       | 3454.98                       |                        |          | $\nu_1 + \nu_3, A_1$                                         | 4400.55                       | 4401.81                       |                     |          |
| $\nu_2 + \nu_5, A_2$                                                  | 3491.06                       | 3473.85                       |                        |          | $2\nu_7 + \nu_8, B_2$                                        | 4415.86                       | 4412.40                       | 4413.7498           | tw       |
| $\nu_3 + 2\nu_4, A_1$                                                 | 3491.46                       | 3484.72                       | 3484.3728              | tw       | $4\nu_7, A_1$                                                | 435141                        | 4415.75                       |                     |          |
| $_{8}^{5} + \nu_{9}, A_{1}$                                           | 3491.99                       | 3521.63                       | 3522.1169              | tw       | $3\nu_4 + \nu_9, B_2$                                        | 430429                        | 4423.72                       |                     |          |
| $v_5 + 2v_7, A_2$                                                     | 3514.72                       | 3531.73                       | 5522.110)              |          | $v_3 + v_6, B_1$                                             | 4421.61                       | 4425.36                       | 4425.5493           | tw       |
| $v_3 + v_4 + v_7, B_1$                                                | 3554.78                       | 3542.35                       |                        |          | $v_3 + v_6, D_1$<br>$v_4 + v_8 + v_9, A_1$                   | 4482.70                       | 4435.43                       | 4436.4881           | tw       |
| $B_7 + 2\nu_9, B_1$                                                   | 3562.59                       | 3558.11                       |                        |          | $\nu_4 + \nu_8 + \nu_9, A_1$<br>$\nu_2 + \nu_7 + \nu_9, A_2$ | 4487.69                       | 4449.14                       | 4450.4001           | ιw       |
| $v_{5}^{7} + 2v_{9}, B_{1}$<br>$v_{8}, B_{1}$                         | 3567.72                       | 3562.07                       | 3561.3 <sup>b</sup>    | tax.     | $2\nu_{4} + \nu_{5} + \nu_{7}, B_{2}$                        | 4485.88                       | 4477.31                       |                     |          |
|                                                                       |                               | 3569.23                       |                        | tw       |                                                              |                               |                               |                     |          |
| $_{2} + \nu_{3}, A_{1}$                                               | 3603.90                       |                               | 3569.6894<br>3609.7748 | tw       | $\nu_4 + 2\nu_7 + \nu_9, B_2$                                | 4459.15                       | 4479.11                       | 1105 2622           |          |
| $_{4} + \nu_{5} + \nu_{9}, B_{1}$                                     | 3589.78                       | 3609.36                       |                        | tw       | $2\nu_8, A_1$                                                | 4456.12                       | 4485.57                       | 4485.2623           | tw       |
| $_{3}+2\nu_{7},A_{1}$                                                 | 3601.33                       | 3626.93                       | 3626.6605              | tw       | $\nu_3 + 3\nu_4, A_1$                                        | 4505.84                       | 4496.89                       | 4496.5313           | tw       |
| $_{5} + \nu_{7} + \nu_{9}, A1$                                        | 3654.73                       | 3656.33                       | 2662.0061              |          | $\nu_2 + \nu_4 + \nu_5, A_2$                                 | 4526.31                       | 4506.40                       |                     |          |
| $_{3} + \nu_{8}, B_{2}$                                               | 3679.31                       | 3665.11                       | 3663.8061              | tw       | $\nu_2 + \nu_5 + \nu_7, B_2$                                 | 4576.92                       | 4539.76                       | 4520 5054           |          |
| $v_9, B_2$                                                            | 3679.82                       | 3679.92                       | 3680.0021              | tw       | $\nu_7 + \nu_8 + \nu_9, B_1$                                 | 4556.42                       | 4540.28                       | 4539.7954           | tw       |
| $+ 2\nu_5, A_1$                                                       | 3691.94                       | 3692.80                       | 3692.5422              | tw       | $3\nu_7 + \nu_9, A_2$                                        | 4515.28                       | 4544.47                       |                     |          |
| $_{2}+2\nu_{9},A_{1}$                                                 | 4620.89                       | 4558.21                       | 4557.8901              | tw       | $3\nu_5 + \nu_7, B_2$                                        | 5073.56                       | 5070.07                       |                     |          |
| $_{3}+2\nu_{4}+\nu_{7},B_{1}$                                         | 4578.87                       | 4560.06                       |                        |          | $2\nu_3 + \nu_8, B_2$                                        | 5098.52                       | 5082.69                       |                     |          |
| $\mu + \nu_5 + 2\nu_7, A_2$                                           | 4550.58                       | 4564.18                       |                        |          | $\nu_1 + \nu_4 + \nu_7, B_1$                                 | 5089.34                       | 5086.82                       |                     |          |
| $\mu + \nu_5 + \nu_8, B_1$                                            | 4586.50                       | 4572.48                       |                        |          | $2\nu_5 + 2\nu_9, A_1$                                       | 5083.93                       | 5101.94                       |                     |          |
| $\nu_4 + 2\nu_9, A_1$                                                 | 4513.07                       | 4595.48                       |                        |          | $\nu_1 + 2\nu_7, A_1$                                        | 5137.71                       | 5111.12                       | 5111.5773           | tw       |
| $_{3} + \nu_{4} + 2\nu_{7}, A_{1}$                                    | 4637.71                       | 4606.41                       |                        |          | $\nu_3 + 3\nu_9, B_2$                                        | 5117.51                       | 5111.35                       |                     |          |
| $\mu + \nu_7 + 2\nu_9, B_1$                                           | 4593.38                       | 4612.33                       |                        |          | $\nu_4 + \nu_6 + \nu_7, A_1$                                 | 5123.44                       | 5121.46                       |                     |          |
| $\nu_4 + \nu_5 + \nu_9, B_1$                                          | 4613.28                       | 4625.58                       |                        |          | $\nu_3 + \nu_4 + 2\nu_5, A_1$                                | 5125.25                       | 5125.52                       |                     |          |
| $+ 3\nu_7, B_2$                                                       | 4601.08                       | 4635.12                       |                        |          | $2\nu_3 + \nu_4 + \nu_9, B_2$                                | 5123.52                       | 5139.04                       |                     |          |
| $v_2 + v_3 + v_7, B_1$                                                | 4679.27                       | 4638.63                       |                        |          | $\nu_6 + 2\nu_7, B_1$                                        | 5168.70                       | 5144.12                       | 5142.7189           | tw       |
| $v_7 + 2v_9, A_1$                                                     | 4659.51                       | 4643.77                       |                        |          | $4\nu_4 + \nu_7, B_1$                                        | 5178.06                       | 5153.08                       |                     |          |
| $A + 2\nu_9, B_2$                                                     | 4677.33                       | 4655.55                       |                        |          | $2\nu_3 + \nu_7 + \nu_9, A_2$                                | 5176.65                       | 5161.80                       |                     |          |
| . , <u> </u>                                                          | 4654.59                       | 4657.08                       |                        |          | $\nu_3 + 2\nu_5 + \nu_7, B_1$                                | 5178.61                       | 5162.58                       |                     |          |
| $+ \nu_7 + \nu_9 A_1$                                                 |                               |                               |                        |          |                                                              |                               |                               | 51(0.0(0)           |          |
|                                                                       | 4707 97                       | 4676 48                       |                        |          | $\nu_1 + \nu_2 A_1$                                          | 7118 89                       | או ט/ ור                      | 3169 X626           | TW/      |
| $v_5 + v_7 + v_8, A_1$<br>$v_4 + 3v_9, B_2$<br>$v_2 + v_2 + v_4, A_1$ | 4707.97<br>4634 53            | 4676.48<br>4668 22            | 4668 2418              | tw       | $v_1 + v_2, A_1$<br>$3v_5 + v_2, B_1$                        | 5138.89<br>5187.96            | 5170.18<br>5199.29            | 5169.8626           | tw       |
|                                                                       | 4707.97<br>4634.53<br>4687.97 | 4676.48<br>4668.22<br>4700.07 | 4668.2418              | tw       |                                                              | 5138.89<br>5187.96<br>5219.11 | 5170.18<br>5199.29<br>5204.04 | 5169.8626           | tw<br>tw |

### **TABLE 5 Continued**

| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | band                           | center <sup>83</sup> | center, calc. | contor ovn                      | ref | band                                        | center <sup>83</sup> | center, calc. | contor ovn                      | rof                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|----------------------|---------------|---------------------------------|-----|---------------------------------------------|----------------------|---------------|---------------------------------|------------------------|
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                |                      |               | $\frac{\text{center, exp.}}{4}$ |     |                                             |                      |               | $\frac{\text{center, exp.}}{4}$ | $\frac{\text{ref}}{5}$ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                |                      |               | 4                               | 3   |                                             |                      |               | 4                               | 5                      |
| $ \begin{aligned} & p_1 + p_1 + p_2 & p_2 + p_1 + p_2 & p_2 + p_2 & p_2 & p_2 + p_1 + p_2 & p_2 & p_2 + p_1 + p_2 & p_2 & p_2 & p_2 + p_2 & p_2 & p_2 & p_2 & p_2 + p_2 & p_2 &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                |                      |               |                                 |     |                                             |                      |               |                                 |                        |
| $ \begin{aligned} & y_1 + y_1 + y_n A_2 & 4738.27 & 4739.87 & y_n + y_n A_2 & 5224.51 & 5233.34 & y_1 + y_1 + y_n A_1 & 5258.55 & 5244.03 \\ & y_1 + y_1 + y_n A_1 & 4778.65 & 4752.70 & y_n + y_n A_2 & 5256.65 & 5254.03 \\ & y_1 + y_n A_1 & 4778.65 & 4768.97 & y_1 + y_1 + y_n B_2 & 5231.17 & 5255.85 & 5256.64 \\ & y_1 + y_n A_n & 4778.65 & 4768.97 & y_1 + y_1 + y_n B_2 & 5231.07 & 5266.65 & 5244.03 \\ & y_1 + y_1 + y_n A_1 & 4780.55 & 4773.23 & y_1 + y_n A_1 & 5226.38 & 5204.04 \\ & y_1 + y_1 + y_n A_1 & 4226.24 & 4773.23 & y_1 + y_n A_1 & 5226.38 & 5204.04 \\ & y_1 + y_1 + y_n A_1 & 4780.57 & 4817.07 & y_1 + y_n A_1 & 5206.38 & 5294.04 \\ & y_1 + y_1 + y_n A_2 & 4805.72 & 4817.07 & y_1 + y_1 + y_n A_1 & 5206.38 & 5294.04 \\ & y_1 + y_1 + y_n A_2 & 4805.72 & 4817.07 & y_n + y_n A_1 & 5206.38 & 5294.04 \\ & y_1 + y_1 + y_n A_2 & 4825.34 & 4855.34 & 4854.416 & 10 & y_1 + y_1 + y_n A_2 & 5310.33 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5310.63 & 5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                |                      |               |                                 |     |                                             |                      |               |                                 |                        |
| $ \begin{split} \mathbf{p}_1 + \mathbf{p}_2 + \mathbf{p}_1 \mathbf{p}_1^2 + \mathbf{p}_2 + \mathbf{p}_1 \mathbf{p}_1^2 + \mathbf{p}_2 \mathbf{p}_1^2 + \mathbf{p}_1 \mathbf{p}_1 \mathbf{p}_1 \mathbf{p}_2 \mathbf{p}_1 $ |                                |                      |               | 4736.0100                       | tw  |                                             |                      |               |                                 |                        |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                |                      |               |                                 |     | –                                           |                      |               |                                 |                        |
| $ \begin{aligned} \mathbf{p}_1 + \mathbf{p}_1 + \mathbf{p}_n A_1 & 4778.65 & 4768.97 & \mathbf{p}_1 + \mathbf{p}_1 + \mathbf{p}_n B_2 & 5231.17 & 5253.58 & 5260.4396 \\ \mathbf{p}_1 + \mathbf{p}_1 + \mathbf{p}_n A_1 & 4786.93 & 4775.23 & \mathbf{p}_2 + 2\mathbf{p}_1 + \mathbf{p}_1 B_1 & 5350.53 & 5260.4396 \\ \mathbf{p}_1 + \mathbf{p}_1 + \mathbf{p}_n A_1 & 480.03 & 4785.03 & 3\mathbf{p}_1 + \mathbf{p}_n A_1 & 5320.31 & 5260.53 & 3\mathbf{p}_1 + \mathbf{p}_n A_1 & 5320.31 & 5260.53 & 3\mathbf{p}_1 + \mathbf{p}_n A_1 & 5320.31 & 5260.53 & 3\mathbf{p}_1 + \mathbf{p}_n A_1 & 5320.31 & 5260.53 & 3\mathbf{p}_1 + \mathbf{p}_n A_1 & 5320.31 & 5260.53 & 3\mathbf{p}_1 + \mathbf{p}_n A_1 & 5320.31 & 5260.53 & 3\mathbf{p}_1 + \mathbf{p}_n A_1 & 5320.31 & 5260.53 & 3\mathbf{p}_1 + \mathbf{p}_n A_1 & 5320.31 & 5260.53 & 3\mathbf{p}_1 + \mathbf{p}_n A_1 & 5320.31 & 5260.53 & 3\mathbf{p}_1 + \mathbf{p}_n A_1 & 5320.31 & 5260.53 & 3\mathbf{p}_1 + \mathbf{p}_n A_1 & 5320.31 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 & 5310.53 &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                |                      |               |                                 |     |                                             |                      |               |                                 |                        |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                |                      |               |                                 |     |                                             |                      |               |                                 |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                |                      |               |                                 |     |                                             |                      |               | 5256.4396                       | tw                     |
| $ \begin{aligned} p_1 + p_2, h_1, h_2, h_1, h_2, h_1, h_2, h_1, h_2, h_1, h_2, h_2, h_2, h_1, h_2, h_2, h_2, h_2, h_2, h_2, h_2, h_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                |                      |               |                                 |     |                                             |                      |               |                                 |                        |
| $ \begin{aligned} p_1 + p$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                |                      |               |                                 |     |                                             |                      |               |                                 |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                |                      |               |                                 |     |                                             |                      |               |                                 |                        |
| $\begin{split} u_{1} + v_{1} + v_{n} A_{1} & 5206.38 & 5294.19 \\ v_{1} + v_{1} + v_{n} A_{1} & 5206.38 & 5294.19 \\ v_{1} + v_{1} + v_{n} A_{2} & 4823.24 & 4853.41 & 4854.416 & tw & v_{1} + v_{1} + v_{n} A_{2} & 5310.33 & 5296.52 \\ v_{2} + v_{2} + v_{2} + v_{n} B_{2} & 4832.94 & 4853.41 & 4854.416 & tw & v_{1} + 2v_{1} + v_{n} B_{2} & 5310.33 & 5296.52 \\ v_{2} + v_{2} + v_{2} + v_{2} + B_{2} & 4876.19 & 4867.60 & 2v_{1} + 2v_{n} A_{1} & 5322.33 & 5326.62 \\ v_{2} + v_{2} + v_{2} + B_{2} & 4884.37 & 4881.50 & 2v_{1} + v_{1} + v_{2} + v_{2} & 5302.38 & 5327.6 \\ v_{2} + v_{1} + v_{2} + v_{2} + B_{2} & 4884.37 & 4881.50 & 2v_{1} + v_{1} + v_{2} + v_{2} & 5332.31 & 5327.6 \\ v_{2} + v_{1} + v_{2} + v_{2} & A_{1} & 4927.48 & 4889.93 & 4v_{1} + v_{2} + v_{2} & A_{1} & 5309.22 & 5333.10 \\ v_{2} + v_{2} + v_{1} + A_{2} & 4924.4 & 4922.84 & 2v_{1} + v_{2} + v_{1} & B_{1} & 5334.50 & 5356.85 \\ v_{2} + v_{2} + v_{1} + A_{2} & 4924.4 & 4928.84 & 4925.22 & v_{2} + v_{1} + v_{2} & B_{2} & 5376.13 & 5378.64 & 5356.95 \\ v_{2} + v_{2} + v_{2} & A_{1} & 49910.65 & 4902.61 & 2v_{1} + v_{2} & V_{2} & A_{1} & 5371.64 & 5301.90 & 2v_{1} + v_{2} + v_{2} & B_{2} & 5376.13 & 5378.64 & 536.95 \\ v_{2} + v_{2} + v_{2} & A_{1} & 49910.65 & 4902.64 & 4952.22 & v_{2} + v_{1} + v_{2} & B_{2} & 5376.13 & 5378.64 & 5346.95 \\ v_{2} + v_{2} + v_{2} & A_{1} & 49910.65 & 4992.40 & 4988.02 & v_{1} + v_{2} + v_{2} & B_{2} & 5376.13 & 5378.64 & 5446.96 \\ v_{2} + v_{2} + v_{2} & A_{1} & 501.11 & 4977.93 & 3v_{1} + v_{2} + v_{2} & B_{2} & 5376.13 & 5378.54 & 5378.54 & 511.08 \\ v_{2} + v_{2} + v_{2} & A_{1} & 501.11 & 4977.93 & 502.44 & 408.48 & 5411.25 & 529.24 & 502.24 & 502.24 & 502.24 & 502.24 & 502.24 & 502.24 & 502.24 & 502.24 & 502.24 & 502.24 & 502.24 & 502.24 & 502.24 & 502.24 & 502.24 & 502.24 & 502.24 & 502.24 & 502.24 & 502.24 & 502.24 & 502.24 & 502.24 & 502.24 & 502.24 & 502.24 & 502.24 & 502.24 & 502.24 & 502.24 & 502.24 & 502.24 & 502.24 & 502.24 & 502.24 & 502.24 & 502.24 & 502.24 & 502.24 & 502.24 & 502.24 & 502.24 & 502.24 & 502.24 & 502.24 & 502.24 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                |                      |               |                                 |     |                                             |                      |               |                                 |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | · · · ·                        |                      |               |                                 |     |                                             |                      |               |                                 |                        |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                |                      |               |                                 |     |                                             |                      |               |                                 |                        |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                |                      |               | 4054 4146                       |     |                                             |                      |               |                                 |                        |
| $ \begin{aligned} y_{2} + y_{7} + 2 y_{8}, B_{2} & 4876.10 & 4876.40 & 2 y_{7} + 2 y_{8}, A_{1} & 5322.39 & 5322.62 \\ y_{8} + y_{8}, B_{2} & 4884.37 & 4884.37 & 4884.50 & 2 y_{1} + y_{7} + y_{8}, A_{2} & 5322.39 & 5322.62 \\ y_{7} + y_{8}, P_{8}, $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                |                      |               | 4854.4146                       | tw  |                                             |                      |               | 5210 50(0                       | 4                      |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                |                      |               |                                 |     | =                                           |                      |               | 5318.5860                       | tw                     |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                |                      |               |                                 |     |                                             |                      |               |                                 |                        |
| $ \begin{aligned} y_1 + y_1 + y_2 + y_1 + y$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                |                      |               |                                 |     |                                             |                      |               |                                 |                        |
| $ \begin{aligned} p_1 + p_1 + p_2 + p_4 + p_4 + p_1 + p_2 + p_1 + p_1 + p_2 + p_1 + p$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                |                      |               |                                 |     |                                             |                      |               |                                 |                        |
| $ \begin{aligned} & p_1 + p_1 + p_2, A_1 & 4924.28 & 4895.98 & 2 p_4 + 3p_5, B_1 & 5333.10 \\ & 2p_1 + 2p_4, A_1 & 4907.84 & 4928.61 & 2p_2 + p_5, B_1 & 5334.50 & 5356.85 \\ & p_1 + 2p_4 + p_5, B_1 & 4907.84 & 4928.61 & p_2 + p_4, P_4, B_1 & 5373.86 & 5356.85 \\ & p_3 + p_4 + p_4, P_4, B_1 & 4967.98 & 4952.29 & p_2 + p_4 + p_4, P_6, B_2 & 5358.87 & 5364.11 \\ & p_5 + p_4 + p_5, A_1 & 4967.98 & 4952.29 & p_4 + p_4 + p_4, B_2 & 5358.87 & 5364.11 \\ & p_5 + p_4 + p_5, A_1 & 4967.98 & 4952.29 & p_4 + p_4 + p_5, A_2 & 5414.44 & 5403.59 \\ & p_5 + p_4 + p_5, A_1 & 4992.10 & 4997.73 & p_4 + p_4 + p_6, A_2 & 5414.44 & 5403.55 \\ & p_4 + p_4 + p_4, A_2 & 5404.84 & 5411.25 & p_4 + p_5 + p_6, B_4 & 5433.03 & 5411.08 \\ & p_4 + p_4 + p_4 + p_5, A_2 & 5413.43 & 5412.09 & p_4 + p_5 + p_6, B_4 & 5435.77 & 5415.77 & p_4 + p_5 + p_6, B_4 & 5437.77 & 5415.77 & p_4 + p_5 + p_6, B_4 & 5437.77 & 5415.77 & p_4 + p_5 + p_6, B_4 & 5437.77 & 5415.77 & p_4 + p_4 + p_6, A_1 & 5438.77 & 5415.77 & p_4 + p_4 + p_6, A_1 & 5438.77 & 5415.77 & p_4 + p_4 + p_6, A_1 & 5438.77 & 5415.77 & p_4 + p_4 + p_6, A_1 & 5438.82 & 5445.38 & p_4 + 2p_6, A_1 & 5026.76 & 5039.59 & 5039.548 & p_4 + 2p_6, A_1 & 5438.21 & 5445.38 & p_4 + 2p_6, A_1 & 5438.21 & 5445.38 & p_4 + 2p_6, A_1 & 5438.21 & 5445.38 & p_4 + p_4 + p_6, A_1 & 5438.21 & 5445.38 & p_4 + p_4 + p_6, A_1 & 5438.21 & 5445.38 & p_4 + p_4 + p_6, A_1 & 5438.21 & 5445.38 & p_4 + p_4 + p_6, A_1 & 5438.21 & 5445.38 & p_4 + p_4 + p_6, A_1 & 5438.21 & 5445.38 & p_4 + p_4 + p_6, A_1 & 5438.21 & 5445.38 & p_4 + p_4 + p_6, A_1 & 5350.5 & 5437.54 & p_4 + p_4 + p_6, A_1 & 5350.5 & 5437.54 & p_4 + p_4 + p_6, A_1 & 5350.5 & 5437.54 & p_4 + p_4 + p_6, A_1 & 5350.5 & 5446.49 & p_4 + p_4 + p_6, A_1 & 5350.5 & 5447.34 & p_4 + p_7 + p_6, B_5 & 5733.46 & p_4 + p_4 + p_6, A_1 & 5350.5 & 5446.49 & p_4 + p_4 + p_6, A_1 & 5350.5 & 5446.49 & p_4 + p_4 + p_6, A_1 & 5350.5 & 5446.49 & p_4 + p_4 + p_6, A_1 & 5350.5 & 5457.54 & 574.44 & p_4 + p_7 + p_7 + p_6, B_5 & 5733.46 & p_4 + p_4 + p_6 + p_$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5 1 5 17 2                     |                      |               |                                 |     |                                             |                      |               |                                 |                        |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                |                      |               |                                 |     |                                             |                      |               |                                 |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                |                      |               |                                 |     |                                             |                      |               |                                 |                        |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                |                      |               |                                 |     | - // 1                                      |                      |               |                                 |                        |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                |                      |               |                                 |     | 2 1 07 2                                    |                      |               |                                 |                        |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                |                      |               |                                 |     |                                             |                      |               |                                 |                        |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                |                      |               | 4055 2027                       | 4   |                                             |                      |               |                                 |                        |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                |                      |               | 4955.2927                       | tw  | 1 5 1. 2                                    |                      |               |                                 |                        |
| $ \begin{aligned} & p_1 + p_1 +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                |                      |               |                                 |     |                                             |                      |               |                                 |                        |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                |                      |               |                                 |     | , , , <u>,</u>                              |                      |               |                                 |                        |
| $ \begin{aligned} y_1 + y_2 + y_3, A_2 & 5014.34 & 5015.18 & y_2 + y_2 + y_3, A_2 & 5433.03 & 5415.78 \\ y_4 + 3y_5, A_2 & 5014.34 & 5015.18 & 2y_3 + y_2 + y_5, A_1 & 5438.77 & 5420.82 \\ z_1 + 2y_4, A_1 & 5024.54 & y_4 + 2y_5, A_1 & 5435.79 & 5422.23 \\ y_1 + 2y_4, A_1 & 5024.18 & 5042.37 & y_1 + 2y_6, A_1 & 5435.77 & 5420.82 \\ y_1 + y_4, y_6, B_1 & 5079.62 & 5056.75 & y_1 + 2y_6, A_1 & 5435.39 & 5437.74 \\ y_6, A_1 & 5079.62 & 5056.75 & y_1 + 2y_6, A_1 & 5438.21 & 5445.38 \\ y_1 + y_6, B_1 & 5064.00 & 5063.69 & y_4 + 4y_7, A_1 & 5388.21 & 5445.38 \\ y_1 + y_6, y_6, B_1 & 5448.30 & 5446.68 & 5446.5963 & tw & y_1 + y_4, y_6, B_2 & 5775.35 & 5738.03 \\ y_1 + y_6 + y_6, B_1 & 5477.73 & 5474.39 & y_2 + y_4 + 3y_7, B_1 & 5716.88 & 5732.46 \\ y_1 + y_6, y_6, A_1 & 5490.07 & 5480.96 & y_1 + y_4 + 3y_7, B_1 & 5716.88 & 5742.02 \\ y_1 + y_8 + y_9, A_1 & 5490.07 & 5480.96 & y_1 + y_4 + y_7, A_2 & 5683.68 & 5742.71 \\ y_1 + y_8 + y_6, A_1 & 5490.07 & 5480.96 & y_1 + y_8 + y_6, B_2 & 5739.02 & 5744.49 \\ y_1 + y_8 + y_7, B_2 & 550.40 & 5499.80 & y_1 + y_4 + 2y_7, A_1 & 5753.45 & 5750.60 \\ y_1 + y_4 + y_7 + y_6, B_2 & 5573.45 & 5750.60 \\ y_1 + y_4 + y_7 + y_6, B_2 & 5773.02 & 5744.61 & 5752.88 \\ y_1 + y_2 + y_7, B_2 & 550.40 & 5499.08 & y_1 + y_4 + y_6, H_2 & 5775.73 & 576.15 \\ y_1 + y_6, B_2 & 553.60 & 5519.00 & y_1 + y_4 + y_7 + y_6, B_2 & 5775.03 & 5777.12 \\ y_1 + y_2, B_2 & 553.60 & 5519.00 & y_1 + y_4 + y_7 + y_6, B_2 & 5775.03 & 5770.22 \\ y_1 + y_2 + y_6, B_1 & 5531.25 & 5510.44 & 3y_7 + 2y_9, B_1 & 572.66 & 5773.40 \\ y_2 + y_4 + y_7 + y_6, B_1 & 5531.25 & 5510.44 & 3y_7 + 2y_7 + y_6, B_2 & 5775.03 & 5770.32 \\ y_1 + y_2 + y_6, B_1 & 5532.58 & 5528.52 & y_1 + 2y_7 + y_6, B_1 & 5821.74 & 5819.26 \\ y_1 + y_2 + y_7, A_1 & 5571.50 & 5570.38 & y_1 + y_2 + y_2 + y_7 + y_6, B_1 & 5821.74 & 5819.26 \\ y_2 + y_4 + y_7 + y_6, B_1 & 5531.60 & y_1 + y_2 + y_5 + y_7 + y_6, A_2 & 5831.46 & 5806.5300 \\ y_1 + y_2 + y_6, A_1 & 5571.60 & 5570.93 & y_1 + 2y_7 + y_6, B_1 & 5821.74 & 5819.26 \\ y_1 + y_2 + y_6, A_1 & 5571.60 & 5570.93 & y_1 + 2y_7 + y_7 + y_6, B_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | • • • •                        |                      |               |                                 |     |                                             |                      |               |                                 |                        |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5 1 2.1                        |                      |               |                                 |     |                                             |                      |               |                                 |                        |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                |                      |               |                                 |     | $v_2 + v_7 + v_8, A_2$                      |                      |               |                                 |                        |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                |                      |               |                                 |     |                                             |                      |               |                                 |                        |
| $ \begin{aligned} & p_1 + v_1 + v_5 + v_9, B_1  5024.18  5042.37 \\ & 5v_4, A_1  5079.62  5056.75 \\ & v_1 + v_6, B_1  5064.00  5063.69 \\ & v_1 + v_1 + v_1 + v_4, A_1  5430.85  5439.97 \\ & v_1 + v_5 + v_7 + v_9, A_1  5083.16  5064.36 \\ & v_2 + 2v_4 + v_6, B_2  5455.30  5446.49 \\ & v_5 + v_5 + v_7 + v_9, A_1  5083.16  5064.36 \\ & v_2 + 2v_4 + v_6, B_2  5457.34 \\ & v_1 + v_5 + v_7, B_1  5474.39 \\ & v_1 + v_5 + v_7, B_1  5474.39 \\ & v_1 + v_5 + v_6, B_2  5457.34 \\ & v_1 + v_8 + v_8, A_2  5767.53  5738.03 \\ & v_1 + v_8 + v_8, A_2  5737.70  5742.02 \\ & s_1 + v_8 + v_8, A_2  5683.68  5742.71 \\ & v_2 + v_8 + v_8, A_2  5739.02  5744.49 \\ & v_2 + v_8 + v_8, A_2  5739.02  5744.49 \\ & v_2 + v_8 + v_8, A_1  5490.07  5486.96 \\ & v_1 + v_8 + v_6, B_2  5739.02  5744.49 \\ & v_2 + v_8 + v_8, A_1  5490.30  5495.31 \\ & v_2 + v_8 + v_7, A_1  5496.30  5495.31 \\ & v_2 + v_4 + v_7 + v_8, B_2  5770.99  5750.23 \\ & v_1 + v_8 + v_7, A_1  5496.30  5495.31 \\ & v_2 + v_4 + v_5 + v_9, B_1  5746.61  5752.88 \\ & v_1 + v_2 + v_1 + v_7 + v_8, B_2  5773.03  5771.22 \\ & v_1 + v_8 + v_9, B_2  5504.08  5499.08 \\ & v_3 + v_4 + v_7 + v_8, B_2  5775.06  5777.33  5762.15 \\ & v_3 + 4v_4, A_1  5511.24  5499.32 \\ & v_1 + v_2 + v_3 + v_8, B_2  5735.06  5771.72 \\ & v_2 + v_2 + v_9, B_2  5533.67  5504.58 \\ & v_3 + 4v_7, A_1  5752.66  5777.30 \\ & v_2 + v_2 + v_9, B_2  5535.60  5519.00 \\ & v_4 + v_5 + v_8 + v_9, A_1  5752.66  5773.40 \\ & v_2 + v_2 + v_8, B_1  5752.66  5771.30 \\ & v_2 + v_2 + v_9, B_1  5752.66  5771.30 \\ & v_2 + v_2 + v_9, B_1  5751.26  5578.48 \\ & v_2 + 2v_4 + v_8, A_1  5591.90 \\ & v_4 + v_7 + v_8, A_2  5752.57  5806.32 \\ & v_4 + v_7 + v_8, A_2  5752.57  5806.32 \\ & v_4 + v_7 + v_8, A_2  5831.48  5816.77 \\ & v_2 + v_8 + v_9, A_1  5541.61  5548.69 \\ & v_2 + v_4 + v_7 + v_8, A_2  5831.48  5816.77 \\ & v_2 + v_8 + v_9, A_1  5562.51  5562.1906  tw  v_4 + v_7 + v_8, A_2  5831.48  5816.77 \\ & v_4 + v_8 + v_8, A_1  5821.74  5818.26 \\ & v_4 + v_7 + v_8, A_2  5860.42  5846.30 \\ & v$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                |                      |               | 5030 5485                       | tax |                                             |                      |               |                                 |                        |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                |                      |               | 5059.5465                       | ιw  |                                             |                      |               |                                 |                        |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                |                      |               |                                 |     |                                             |                      |               |                                 |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                |                      |               |                                 |     |                                             |                      |               |                                 |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                |                      |               |                                 |     |                                             |                      |               |                                 |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                |                      |               | 5446 5963                       | tw  |                                             |                      |               |                                 |                        |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                |                      |               | 5440.5705                       |     | $v_3 + v_4 + 3v_7, b_1$<br>$v_5 + 2v_2 A_2$ |                      |               |                                 |                        |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                |                      |               |                                 |     |                                             |                      |               |                                 |                        |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                |                      |               |                                 |     |                                             |                      |               |                                 |                        |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                |                      |               |                                 |     |                                             |                      |               |                                 |                        |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                |                      |               |                                 |     |                                             |                      |               |                                 |                        |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                |                      |               |                                 |     |                                             |                      |               |                                 |                        |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                |                      |               |                                 |     |                                             |                      |               |                                 |                        |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                |                      |               |                                 |     |                                             |                      |               |                                 |                        |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                |                      |               |                                 |     |                                             |                      |               |                                 |                        |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                |                      |               |                                 |     |                                             |                      |               |                                 |                        |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                |                      |               |                                 |     | 5 . ,, 2                                    |                      |               |                                 |                        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | - // -                         |                      |               |                                 |     |                                             |                      |               |                                 |                        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                |                      |               |                                 |     |                                             |                      |               |                                 |                        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                |                      |               |                                 |     | - • • -                                     |                      |               |                                 |                        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                |                      |               |                                 |     |                                             |                      |               |                                 |                        |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 5 ,, 1                       |                      |               |                                 |     |                                             |                      |               | 5806.5300                       | tw                     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                |                      |               | 5547.7442                       | tw  |                                             | 5813.60              |               |                                 |                        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                | 5572.99              | 5560.85       |                                 |     |                                             | 5833.48              | 5813.70       |                                 |                        |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\nu_2 + \nu_8 + \nu_9, A_1$   | 5569.91              | 5562.51       | 5562.1906                       | tw  | $\nu_4 + \nu_7 + 3\nu_9, A_2$               | 5812.96              | 5818.82       |                                 |                        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                | 5573.50              | 5563.18       |                                 |     | $2\nu_3 + \nu_6, B_1$                       | 5821.74              | 5819.28       | 5819.1679                       | tw                     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $v_3 + 3v_4 + v_7, B_1$        | 5593.98              | 5570.18       |                                 |     |                                             | 5802.72              | 5825.01       |                                 |                        |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                | 5525.16              |               |                                 |     | $\nu_2 + 3\nu_9, B_2$                       |                      |               |                                 |                        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                | 5596.30              | 5579.93       |                                 |     | $\nu_3 + 2\nu_4 + \nu_7 + \nu_9, A_2$       | 5814.60              | 5829.99       |                                 |                        |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\nu_4 + 3\nu_7 + \nu_9, A_2$  | 5549.44              | 5581.60       |                                 |     |                                             | 5845.81              | 5830.18       |                                 |                        |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\nu_4 + \nu_5 + 2\nu_7, A_2$  | 5577.45              | 5586.23       |                                 |     | $2\nu_4 + \nu_5 + 2\nu_9, A_2$              | 5827.44              | 5840.97       |                                 |                        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                | 5623.13              | 5589.16       |                                 |     | $\nu_2 + \nu_3 + \nu_4 + \nu_9, B_2$        | 5864.23              | 5846.30       |                                 |                        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\nu_3 + \nu_5, A_2$           | 5596.20              | 5592.03       |                                 |     | $\nu_8 + 3\nu_9, A_1$                       | 5879.60              | 5849.73       |                                 |                        |
| $\nu_3 + 2\nu_4 + 2\nu_7, A_1$ 5662.53 5615.01 $\nu_5 + \nu_7 + \nu_8 + \nu_9, B_2$ 5869.12 5860.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $v_1 + 2v_5, A_1$              | 5605.60              | 5610.55       |                                 |     |                                             | 5837.66              | 5860.02       |                                 |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\nu_3 + 2\nu_4 + 2\nu_7, A_1$ |                      |               |                                 |     |                                             |                      |               |                                 |                        |
| $2\nu_8 + \nu_9, B_2$ 5660.20 5630.89 5631.3137 tw $\nu_2 + 2\nu_5 + \nu_7, B_1$ 5896.29 5863.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $2\nu_8 + \nu_9, B_2$          | 5660.20              | 5630.89       | 5631.3137                       | tw  | $\nu_2 + 2\nu_5 + \nu_7, B_1$               | 5896.29              | 5863.01       |                                 |                        |

#### **TABLE 5 Continued**

| band                                  | center <sup>83</sup> | center, calc. | center, exp. | ref | band                                  | center <sup>83</sup> | center, calc. | center, exp. | ref |
|---------------------------------------|----------------------|---------------|--------------|-----|---------------------------------------|----------------------|---------------|--------------|-----|
| 1                                     | 2                    | 3             | 4            | 5   | 1                                     | 2                    | 3             | 4            | 5   |
| $2\nu_7 + \nu_8 + \nu_9, A_1$         | 5642.74              | 5634.98       |              |     | $2\nu_1, A_1$                         | 5889.44              | 5867.94       | 5867.8242    | tw  |
| $\nu_1 + \nu_3 + \nu_9, B_2$          | 5630.38              | 5637.91       |              |     | $\nu_5 + 3\nu_7 + \nu_9, A_1$         | 5838.41              | 5870.08       |              |     |
| $2\nu_5 + \nu_6, B_1$                 | 5639.32              | 5645.89       |              |     | $\nu_3 + 2\nu_8, A_1$                 | 5885.72              | 5870.25       |              |     |
| $2\nu_4 + \nu_7 + 2\nu_9, B_1$        | 5615.19              | 5646.40       |              |     | $\nu_2 + \nu_3 + \nu_7 + \nu_9, A_2$  | 5914.48              | 5875.52       |              |     |
| $\nu_3 + \nu_6 + \nu_9, A_2$          | 5646.75              | 5649.32       |              |     | $\nu_1 + \nu_6, B_1$                  | 5865.01              | 5878.56       | 5878.4563    | tw  |
| $\nu_2 + \nu_4 + 2\nu_9, A_1$         | 5651.80              | 5650.13       |              |     | $\nu_3 + \nu_4 + 2\nu_7 + \nu_9, B_2$ | 5878.94              | 5880.61       |              |     |
| $3\nu_4 + \nu_5 + \nu_9, B_1$         | 5627.80              | 5651.73       |              |     | $\nu_4 + 2\nu_5 + \nu_8, B_2$         | 5903.66              | 5881.36       |              |     |
| $4\nu_7 + \nu_9, B_2$                 | 5601.09              | 5653.08       |              |     | $\nu_4 + 2\nu_5 + 2\nu_7, A_1$        | 5878.36              | 5889.17       |              |     |
| $\nu_2 + \nu_5 + 2\nu_7, A_2$         | 5659.02              | 5653.26       |              |     | $2\nu_7 + 3\nu_9, B_2$                | 5884.59              | 5898.84       |              |     |
| $\nu_2 + \nu_3 + 2\nu_4, A_1$         | 5658.74              | 5653.98       |              |     | $\nu_3 + 2\nu_4 + \nu_5 + \nu_7, B_2$ | 5910.56              | 5902.84       |              |     |
| $\nu_2 + \nu_5 + \nu_8, B_1$          | 5668.31              | 5655.35       |              |     | $\nu_3 + \nu_4 + \nu_8 + \nu_9, A_1$  | 5914.47              | 5904.84       |              |     |
| $4\nu_3, A_1$                         | 5662.15              | 5657.46       |              |     | $\nu_2 + \nu_5 + 2\nu_9, A_2$         | 5926.79              | 5915.42       |              |     |
| $\nu_2 + \nu_3 + \nu_4 + \nu_7, B_1$  | 5713.20              | 5665.83       |              |     | $\nu_3 + 2\nu_4 + 2\nu_9, A_1$        | 5947.02              | 5921.16       |              |     |
| $\nu_2 + \nu_4 + \nu_5 + \nu_7, B_2$  | 5612.90              | 5666.77       |              |     | $\nu_3 + 3\nu_7 + \nu_9, A_2$         | 5929.08              | 5927.41       |              |     |
| $\nu_4 + \nu_8 + 2\nu_9, B_2$         | 5691.77              | 5671.10       |              |     | $\nu_4 + \nu_5 + \nu_7 + 2\nu_9, B_2$ | 5907.50              | 5933.60       |              |     |
| $\nu_4 + \nu_5 + \nu_7 + \nu_8, A_1$  | 5674.10              | 5673.72       |              |     | $\nu_5 + \nu_8 + 2\nu_9, B_1$         | 5980.88              | 5945.63       |              |     |
| $\nu_2 + \nu_7 + 2\nu_9, B_1$         | 5713.54              | 5677.06       |              |     | $\nu_2 + \nu_3 + \nu_4 + \nu_5, A_2$  | 5958.00              | 5949.38       |              |     |
| $2\nu_4 + \nu_5 + \nu_7 + \nu_9, A_1$ | 5712.20              | 5677.51       |              |     | $2\nu_4 + 2\nu_5 + \nu_9, B_2$        | 5931.86              | 5950.86       |              |     |
| $\nu_3 + 2\nu_4 + \nu_8, B_2$         | 5703.80              | 5705.83       |              |     | $\nu_4 + 4\nu_9, A_1$                 | 5915.25              | 5951.66       |              |     |
| $\nu_4 + 2\nu_7 + 2\nu_9, A_1$        | 5691.02              | 5713.89       |              |     | $2\nu_5 + 3\nu_7, B_1$                | 5928.54              | 5958.48       |              |     |
| $\nu_1 + \nu_3 + \nu_5, A_2$          | 5719.08              | 5722.00       |              |     | $\nu_2 + \nu_3 + \nu_5 + \nu_7, B_2$  | 6002.62              | 5958.94       |              |     |
| $2\nu_2 + \nu_3, A_1$                 | 5738.65              | 5727.99       |              |     | $\nu_3 + \nu_4 + \nu_5 + 2\nu_7, A_2$ | 5969.27              | 5961.85       |              |     |
| $3\nu_4 + 2\nu_5, A_1$                | 5734.82              | 5731.82       |              |     | $\nu_3 + \nu_7 + \nu_8 + \nu_9, B_1$  | 5982.21              | 5971.18       |              |     |
| $2\nu_3 + 2\nu_4 + \nu_7, B_1$        | 5990.54              | 5975.31       |              |     | $\nu_3 + \nu_4 + \nu_7 + 2\nu_9, B_1$ | 6021.35              | 6026.89       |              |     |
| $2\nu_5 + \nu_7 + \nu_8, A_2$         | 5971.62              | 5984.00       |              |     | $2\nu_3 + \nu_4 + 2\nu_7, A_1$        | 6043.38              | 6027.74       |              |     |
| $\nu_7 + 4\nu_9, B_1$                 | 5996.86              | 5986.36       |              |     | $\nu_2 + 2\nu_3 + \nu_4, A_1$         | 6053.19              | 6033.46       |              |     |
| $2\nu_3 + 3\nu_4, A_1$                | 5923.51              | 5992.03       |              |     | $2\nu_4 + 3\nu_5, A_2$                | 6040.79              | 6041.35       |              |     |
| $\nu_5 + 2\nu_7 + 2\nu_9, A_2$        | 5973.49              | 5992.92       |              |     | $\nu_2 + 2\nu_5 + \nu_9, B_2$         | 6023.51              | 6042.11       |              |     |
| $2\nu_6, A_1$                         | 5952.76              | 5999.07       | 5998.9646    | tw  | $\nu_2 + \nu_3 + 2\nu_9, A_1$         | 6055.86              | 6052.32       |              |     |
| $\nu_4 + \nu_5 + 3\nu_9, B_1$         | 6012.95              | 6001.15       |              |     | $\nu_3 + 2\nu_4 + \nu_5 + \nu_9, B_1$ | 6046.15              | 6055.02       |              |     |
| $\nu_1 + 3\nu_4, A_1$                 | 6040.63              | 6002.61       |              |     | $\nu_3 + \nu_5 + \nu_7 + \nu_8, A_1$  | 6079.28              | 6064.52       |              |     |
| $\nu_3 + \nu_5 + 3\nu_7, B_2$         | 6013.78              | 6015.46       |              |     | $2\nu_3 + 3\nu_7, B_1$                | 6082.03              | 6073.52       |              |     |
| $\nu_4 + 2\nu_5 + \nu_7 + \nu_9, A_2$ | 6006.48              | 6021.66       |              |     | $\nu_1 + \nu_4 + \nu_8, B_2$          | 6235.33              | 6209.51       | 6208.2925    | tw  |
| $v_3 + v_4 + v_5 + v_8, B_1$          | 6017.18              | 6026.54       |              |     | $\nu_2 + \nu_6 + \nu_7, A_1$          | 6249.37              | 6298.83       | 6298.9003    | tw  |

<sup>*a*</sup> Values presented in column 2 were calculated with the parameters from Tables I (cc-pVQZ) and VI of ref 83. Band centers presented in column 3 were calculated with the parameters from Tables 6 and 7 of the present paper. Experimental values of the band centers are given in column 4. tw (this work) indicates results obtained in the present investigation. <sup>*b*</sup> Was not used in the fit (see discussion in the text).

| parameter                    | present work          | ref 83                 | ref 35   |
|------------------------------|-----------------------|------------------------|----------|
| $F_{11}$ /aJ Å <sup>-2</sup> | 5.47384 <sup>a</sup>  | 5.47384                | 5.43512  |
| $F_{22}/aJ$                  | $0.578602(332)^{b}$   | 0.57770                | 0.58401  |
| $F_{33}$ /aJ Å <sup>-2</sup> | 5.387874(832)         | 5.37696                | 5.37813  |
| $F_{34}/aJ Å^{-1}$           | $-0.21057^{a}$        | -0.21057               | -0.22100 |
| F <sub>44</sub> /aJ          | 0.533740(416)         | 0.53225                | 0.54801  |
| number of expe               | rimental band centers | 89                     |          |
| number of fitted             |                       | 47                     |          |
| $d_{ m rms}$                 | 1                     | $0.67 \ {\rm cm}^{-1}$ |          |
|                              |                       |                        |          |

<sup>*a*</sup> Constrained to the value from ref 83. <sup>*b*</sup> For uncertainties, see caption to Table 4 and discussion in Section 5.

outdated. The problems of ab initio theory in predicting poorly the experimental band centers therefore reside largely in the anharmonic part of the potential. At this point, one might be tempted to point to the in part large discrepancies between experiment and ab initio theory for the anharmonic constants in Table 7. However, the two sets of constants have a somewhat different physical significance. Whereas the constants of our model are effective Hamiltonian constants obtained from a direct fit to experimental band centers, the anharmonic constants of Lee, Martin, and Taylor are derived from the anharmonic ab initio potential by means of low-order perturbation theory. To compare our anharmonic constants with the ab initio potential of Lee, Martin, and Taylor at the appropriate level of significance, one would have to carry out 9-dimensional vibrational variational calculations on the potential of Lee, Martin, and Taylor and then fit the corresponding calculated band centers (or level positions) with the same effective Hamiltonian as used for the fit to experiment (see also the corresponding discussion in ref 31). The large discrepancies between experimental and theoretical level positions have thus two conceptually quite different origins: They arise

(i) from the errors in the ab initio potential hypersurface and

(ii) from errors in using expressions based on low-order perturbation theory in calculating level positions from anharmonic potential coefficients.

Without carrying out the theoretical program discussed above, it is not easy to separate the different ab initio errors and identify their relative magnitude. Anharmonic constants from the potential of refs 37 and 38 have not been published in detail, thus a direct comparison is not easy. We note, however, that the variational calculations of refs 40–42 on that potential for  $\nu_2 + 2\nu_3$  of CH<sub>4</sub> differ by more than 10 cm<sup>-1</sup> from the precise experimental result for this level (J = 0,  $F_2$  or  $F_1^-$  in  $S_4^*$  at 7510.3378  $\pm$  0.001 cm<sup>-1</sup>).<sup>65</sup>This thus provides an estimate of the intrinsic errors in that potential.

We might mention here also some simple theoretical models which have been proposed to describe the anharmonic level structure of  $CH_2D_2$  in relation to some gas phase<sup>86</sup> and liquid Argon solution experiments.<sup>87</sup> Neither of these is very successful in giving an accurate description. Independent from the theoretical analysis, however, the experimental spectra of  $CH_2D_2$  in liquid Argon solution between 94 and 101 K<sup>87</sup> provide an interesting comparison with our low-temperature gas phase spectra in terms of the shifts

TABLE 7: Vibrational Spectroscopic Parameters of the CH<sub>2</sub>D<sub>2</sub> Molecule (in cm<sup>-1</sup>)

| parameter              | this work               | ref 83   | parameter              | this work          | ref 83  |  |
|------------------------|-------------------------|----------|------------------------|--------------------|---------|--|
| 1                      | 2                       | 3        | 1                      | 2                  | 3       |  |
| $\omega_1$             | 3104.4217 <sup>a</sup>  | 3102.5   | <i>x</i> <sub>38</sub> | -3.903(387)        | -3.067  |  |
| $\omega_2$             | $2237.9855^{a}$         | 2236.9   | X39                    | -0.1829(240)       | 0.651   |  |
| $\omega_3$             | 1472.3115 <sup>a</sup>  | 1470.9   | <i>x</i> <sub>44</sub> | -5.207(148)        | -4.492  |  |
| $\omega_4$             | 1054.4405 <sup>a</sup>  | 1053.1   | X45                    | 1.4696(165)        | 0.512   |  |
| $\omega_5$             | 1361.2375 <sup>a</sup>  | 1360.1   | <i>x</i> <sub>46</sub> | -1.1383(410)       | -1.41   |  |
| $\omega_6$             | 3159.7912 <sup>a</sup>  | 3156.5   | X47                    | -0.868(479)        | 0.727   |  |
| $\omega_7$             | $1117.7847^{a}$         | 1116.2   | X48                    | $-15.620^{b}$      | -15.620 |  |
| $\omega_8$             | 2339.5713 <sup>a</sup>  | 2337.1   | X49                    | -2.5710(516)       | -1.914  |  |
| $\omega_9$             | 1267.4576 <sup>a</sup>  | 1265.7   | X55                    | -2.648(122)        | -2.21   |  |
| <i>x</i> <sub>11</sub> | $-25.3041(812)^{\circ}$ | -27.344  | X56                    | -11.912(248)       | -12.869 |  |
| <i>x</i> <sub>12</sub> | -3.294(858)             | -0.831   | x <sub>57</sub>        | $0.385^{b}$        | 0.385   |  |
| x <sub>13</sub>        | -15.2348(957)           | -7.251   | x <sub>58</sub>        | $-9.655^{b}$       | -9.65   |  |
| x <sub>14</sub>        | -2.4222(828)            | -2.052   | X59                    | -9.6710(420)       | -8.755  |  |
| <i>x</i> <sub>15</sub> | $-11.752^{b}$           | -11.752  | X <sub>66</sub>        | -31.566(151)       | -31.640 |  |
| x <sub>16</sub>        | -114.112(378)           | -115.079 | X67                    | -11.062(496)       | -11.27  |  |
| x <sub>17</sub>        | -7.765(441)             | -8.786   | X <sub>68</sub>        | 3.715 <sup>b</sup> | 3.71    |  |
| x <sub>18</sub>        | -9.216(452)             | 0.403    | X69                    | -12.732(178)       | -10.822 |  |
| $x_{19}$               | -0.621(578)             | -6.139   | x <sub>77</sub>        | -6.587(602)        | -1.879  |  |
| x <sub>22</sub>        | -10.451(540)            | -14.130  | X78                    | $-7.001^{b}$       | -7.00   |  |
| x <sub>23</sub>        | -3.609(264)             | -2.065   | X79                    | 2.464(468)         | 3.590   |  |
| x <sub>24</sub>        | -0.568(439)             | 0.849    | x <sub>88</sub>        | -15.2572(438)      | -18.583 |  |
| x <sub>25</sub>        | $-7.320^{b}$            | -7.320   | x <sub>89</sub>        | -9.145(858)        | -15.620 |  |
| x <sub>26</sub>        | $-0.509^{b}$            | -0.509   | X99                    | -5.2575(453)       | -4.354  |  |
| x <sub>27</sub>        | -1.75(158)              | -8.016   | Утт                    | 0.6657(525)        | -       |  |
| x <sub>28</sub>        | -58.0734(996)           | -59.737  | k <sub>277</sub>       | 61.406(207)        | -       |  |
| x <sub>29</sub>        | -7.677(392)             | -4.344   | $\delta_{277}$         | -1.275(948)        | -       |  |
| x <sub>33</sub>        | -5.1914(976)            | -6.733   | $k_{489}$              | 68.717(321)        | -       |  |
| x <sub>34</sub>        | -1.9829(885)            | -1.539   | Y 3499                 | 13.888(169)        | -       |  |
| x <sub>35</sub>        | $-0.447^{b}$            | -0.447   | k <sub>133</sub>       | -42.61(108)        | -       |  |
| x <sub>36</sub>        | -21.507(175)            | -22.147  | Y3759                  | 40.44(104)         | -       |  |
| x <sub>37</sub>        | -7.307(164)             | -7.529   | γ1166                  | 124.562(591)       | _       |  |

<sup>*a*</sup> Was not fitted but calculated on the basis of the  $F_{ij}$  parameters given in column 2 of Table 6. <sup>*b*</sup> Constrained to the value from ref 83. <sup>*c*</sup> Uncertainties are stated in parentheses in terms of one standard deviation of the last digit given (see Section 5).

of the bands in solution in a liquid weakly interacting "rare-gas" solvent compared to the gas phase, the shifts being quite appreciable.

#### 6. Conclusions and Outlook

We have demonstrated here that by means of spectra taken with high, Doppler limited resolution at low temperatures around 80 K one can accurately locate a large number of vibrational levels for  $CH_2D_2$ , using the technique of specific assignment of  $J' = 0 \leftarrow$ J'' = 1 transitions, which provides pure vibrational level energies. 71 vibrational energies including excitations up to and exceeding 6000 (*hc*)  $cm^{-1}$  were thus combined with previously known vibrational band centers to provide a large data set of 93 vibrational energies. An effective Hamiltonian with 47 parameters adjusted to fit these data describes this spectrum with a root-mean-square deviation of less than  $0.7 \text{ cm}^{-1}$  and no deviations exceeding  $2 \text{ cm}^{-1}$ . A complete list of about 350 levels below 6300 cm<sup>-1</sup> can thus be accurately calculated and should have good reliability over this whole energy range, extendable by extrapolation to higher energies, at least for heuristic purposes. Indeed, the predicted level positions should be helpful in assigning further vibrational levels in future work. Furthermore one can derive an empirical potential function for methane using these data.<sup>76</sup>

The corresponding level energies in Table 5 can be used as a benchmark for ab initio calculations. For instance, we find that level energies calculated from parameters based on the ab initio calculations of Lee, Martin, and Taylor<sup>83</sup> frequently differ from the experimental results by more than  $20 \text{ cm}^{-1}$ , where the discrepancy arises in part from the ab initio potential and in part from the use of low-order perturbation theoretical expressions in the calculations of ref 83.

In future work, it should also be possible to compare with 9-dimensional vibrational variational calculations similar to those reported for  $CH_4$  in refs 40–43 using appropriate full

dimensional potential hypersurfaces.<sup>35–38</sup> Adjustment of parameters of such global analytical potentials<sup>35,36</sup> should enable us then to refine the available potentials. These refined potential hypersurfaces can subsequently be used for quantum-dynamical wavepacket calculations, for instance, with coherent infrared multiphoton excitation for various methane isotopomers<sup>34,45</sup> or for accurate calculations of statistical thermodynamical and kinetics properties based on vibrational densities of states in the methane system. Of course, some of these applications can also be directly based on the experimental and empirical effective Hamiltonian results shown in Table 5.

While level positions in Table 5 are accurate, it should be understood that the assignment of normal mode excitations ( $v_i$ +  $v_j$  +  $v_k$ ) has only an approximate meaning of very limited significance, when there is strong mixing, which we have in fact identified by some of the coupling parameters in Table 6. However, assigned level symmetries are robust and can for instance be used for testing the convergence to symmetry distributions in level densities following.<sup>88</sup> Finally, the present results provide a starting point for a global rovibrational analysis including rovibrational levels to higher *J*-values with extensive anharmonic and Coriolis couplings.<sup>76</sup> Through a combination with similar results for other isotopomers <sup>12</sup>CH<sub>4</sub>,<sup>63</sup> <sup>13</sup>CH<sub>4</sub>,<sup>64</sup> CH<sub>3</sub>D, and CD<sub>3</sub>H,<sup>31,89,90</sup> one can obtain a consistent global description of spectra and dynamics of the stable isotopomers of methane.

Acknowledgment. We enjoyed discussion with Fabio Mariotti, Hans Martin Niederer, and Roberto Marquardt. Our work is supported financially by the ETH Zürich and the Schweizerischer Nationalfonds. O.N.U. and E.S.B. are also supported by a PICS grant. We enjoyed many years of friendly scientific exchange with Max Wolfsberg.

#### Appendix

|                                                | value                | /cm <sup>-1</sup>    | $d_{ m rms}{}^a$                  |          |                                                                                     | value                | /cm <sup>-1</sup>    | $d_{ m rms}{}^a$       |          |
|------------------------------------------------|----------------------|----------------------|-----------------------------------|----------|-------------------------------------------------------------------------------------|----------------------|----------------------|------------------------|----------|
| $J'K'_aK'_c - J''K''_aK''_c$                   | fit.                 | exp. a               | $\overline{10^4 \text{ cm}^{-1}}$ | $n^b$    | $J'K'_aK'_c - J''K''_aK''_c$                                                        | fit.                 | exp. <sup>a</sup>    | $10^4 \text{ cm}^{-1}$ | $n^b$    |
| 1                                              | 2                    | 3                    | 4                                 | 5        | 1                                                                                   | 2                    | 3                    | 4                      | 5        |
| 2 2 0 - 2 0 2                                  | 4.39224              | 4.39222              | 1.7                               | 68       | 524-422                                                                             | 30.79386             | 30.79389             | 1.0                    | 62       |
| 321-303                                        | 5.40865              | 5.40869              | 1.8                               | 81       | 423-303                                                                             | 30.84926             | 30.84928             | 1.1                    | 83       |
| 431-413                                        | 6.93612              | 6.93615              | 1.8                               | 58       | 616 - 514                                                                           | 31.21071             | 31.21072             | 1.4                    | 23       |
| 330 - 312                                      | 7.05255              | 7.05259              | 2.1                               | 67       | 3 1 3 - 1 1 1                                                                       | 31.55448             | 31.55441             | 1.2                    | 51       |
| 422 - 404<br>532 - 514                         | 7.26937<br>7.48927   | 7.26934<br>7.48924   | 1.9<br>1.2                        | 53<br>29 | 3 0 3 - 1 0 1 6 1 5 - 5 3 3                                                         | 32.11883<br>32.25480 | 32.11880<br>32.25466 | 0.8<br>1.3             | 42<br>15 |
| 532 - 514<br>633 - 615                         | 8.99002              | 8.99009              | 1.2                               | 29       | 533 - 431                                                                           | 32.23480             | 32.23400             | 1.5                    | 60       |
| 642 - 624                                      | 9.58088              | 9.58089              | 1.1                               | 10       | 5 4 2 - 4 4 0                                                                       | 33.07648             | 33.07667             | 1.2                    | 31       |
| 331 - 313                                      | 9.72255              | 9.72255              | 2.2                               | 43       | 541 - 451                                                                           | 33.12952             | 33.12941             | 1.8                    | 45       |
| 523 - 505                                      | 9.87175              | 9.87174              | 1.9                               | 29       | 432 - 312                                                                           | 33.45682             | 33.45687             | 1.1                    | 77       |
| 541-523                                        | 10.13182             | 10.13190             | 1.8                               | 32       | 532-432                                                                             | 33.73420             | 33.73414             | 1.4                    | 62       |
| 440 - 422                                      | 10.88372             | 10.88369             | 2.3                               | 33       | 312-110                                                                             | 33.80009             | 33.80007             | 0.8                    | 36       |
| 432-414                                        | 11.07795             | 11.07799             | 2.4                               | 62       | 523-423                                                                             | 35.51663             | 35.51666             | 1.1                    | 57       |
| 2 1 2 - 1 1 0                                  | 12.19917             | 12.19921             | 1.0                               | 71       | 625 - 523                                                                           | 35.59931             | 35.59930             | 1.2                    | 22       |
| 441 - 423                                      | 12.51893             | 12.51889             | 1.7                               | 43       | 431 - 313                                                                           | 36.36331             | 36.36325             | 1.2                    | 37       |
| 5 3 3 - 5 1 5<br>5 4 2 - 5 2 4                 | 12.88537<br>13.16633 | 12.88538<br>13.16636 | 0.7<br>1.7                        | 24<br>27 | 5 1 4 - 4 1 4<br>3 2 1 - 1 0 1                                                      | 37.32288<br>37.52748 | 37.32280<br>37.52754 | 1.3<br>1.0             | 73<br>28 |
| 211 - 111                                      | 14.02211             | 14.02210             | 1.7                               | 82       | 441 - 321                                                                           | 37.95954             | 37.95955             | 1.0                    | 39       |
| 643 - 625                                      | 14.22886             | 14.22875             | 2.8                               | 10       | 524 - 404                                                                           | 38.06323             | 38.06317             | 1.2                    | 53       |
| 651-633                                        | 14.38942             | 14.38948             | 1.0                               | 8        | 440 - 322                                                                           | 38.61987             | 38.61986             | 1.5                    | 36       |
| 3 0 3 - 2 2 1                                  | 14.90957             | 14.90955             | 1.5                               | 63       | 634 - 532                                                                           | 38.81953             | 38.81948             | 0.9                    | 24       |
| 330-414                                        | 15.32632             | 15.32633             | 2.6                               | 32       | 643-541                                                                             | 39.69636             | 39.69640             | 0.7                    | 15       |
| 551-533                                        | 15.94298             | 15.94294             | 0.6                               | 12       | 533-413                                                                             | 39.75251             | 39.75246             | 1.3                    | 48       |
| 2 2 1 - 1 0 1                                  | 17.20926             | 17.20924             | 1.6                               | 68       | 642 - 542                                                                           | 39.96171             | 39.96171             | 2.1                    | 17       |
| 3 1 3 - 2 1 1                                  | 17.53237             | 17.53238             | 1.4                               | 88       | 404 - 220                                                                           | 39.98343             | 39.98339             | 1.6                    | 13       |
| 322 - 220<br>202 - 000                         | 19.51965<br>19.51965 | 19.51661<br>19.51974 | 1.2<br>1.3                        | 80<br>39 | 3 3 0 - 1 1 0<br>6 3 3 - 5 3 3                                                      | 40.85264<br>41.24482 | 40.85270<br>41.24490 | 0.8<br>1.3             | 31<br>22 |
| 202 - 000<br>413 - 331                         | 19.70464             | 19.70461             | 2.0                               | 39       | 331 - 111                                                                           | 41.24482             | 41.27710             | 0.7                    | 30       |
| 524 - 440                                      | 19.91015             | 19.91010             | 1.8                               | 12       | 441 - 303                                                                           | 43.36819             | 43.36816             | 2.2                    | 17       |
| 515 - 431                                      | 19.93102             | 19.93101             | 1.7                               | 18       | 624 - 524                                                                           | 43.54716             | 43.54716             | 1.4                    | 26       |
| 541-505                                        | 20.00356             | 20.00359             | 1.5                               | 9        | 542-422                                                                             | 43.96019             | 43.96022             | 1.8                    | 39       |
| 321-221                                        | 20.31822             | 20.31823             | 1.4                               | 78       | 414-212                                                                             | 43.97978             | 43.97978             | 0.4                    | 38       |
| 404-322                                        | 20.46679             | 20.46676             | 1.8                               | 56       | 404-202                                                                             | 44.37568             | 44.37566             | 0.5                    | 33       |
| 312-212                                        | 21.60091             | 21.60090             | 1.6                               | 98       | 532-414                                                                             | 44.81215             | 44.81214             | 1.0                    | 40       |
| 414 - 312                                      | 22.37887             | 22.37890             | 1.7                               | 79       | 615 - 515                                                                           | 45.14017             | 45.14023             | 1.2                    | 20       |
| 5 2 3 - 4 4 1<br>3 2 2 - 2 0 2                 | 22.99770<br>23.90889 | 22.99783<br>23.90890 | 1.7<br>1.3                        | 20<br>67 | 625 - 505<br>541 - 423                                                              | 45.47106<br>45.64845 | 45.47117<br>45.64846 | 1.6<br>1.1             | 21<br>40 |
| 322 - 202<br>220 - 000                         | 23.90889             | 23.90890             | 0.9                               | 31       | 3 4 1 - 4 2 3<br>4 2 3 - 2 2 1                                                      | 45.75883             | 45.75879             | 0.8                    | 35       |
| 423 - 321                                      | 25.44061             | 25.44060             | 1.7                               | 99       | 634 - 514                                                                           | 46.30880             | 46.30870             | 1.7                    | 23       |
| 505 - 423                                      | 25.64489             | 25.64487             | 1.1                               | 44       | 413 - 211                                                                           | 46.95957             | 46.95957             | 1.0                    | 38       |
| 432-330                                        | 26.40427             | 26.40426             | 1.6                               | 74       | 422-220                                                                             | 47.25280             | 47.25283             | 0.6                    | 29       |
| 431 - 331                                      | 26.64076             | 26.64078             | 1.9                               | 69       | 551-431                                                                             | 48.75938             | 48.75924             | 1.3                    | 21       |
| 515 - 413                                      | 26.86714             | 26.86713             | 1.4                               | 50       | 550 - 432                                                                           | 48.96530             | 48.96522             | 1.5                    | 26       |
| 3 3 1 - 2 1 1                                  | 27.25493             | 27.25497             | 0.9                               | 43       | 643 - 523                                                                           | 49.82817             | 49.82820             | 1.4                    | 17       |
| 422 - 322                                      | 27.73615             | 27.73613             | 1.2                               | 92       | 5 0 5 - 3 2 1<br>5 4 2 - 4 0 4                                                      | 51.08549<br>51.22956 | 51.08552             | 1.2                    | 17       |
| 3 3 0 - 2 1 2 4 1 3 - 3 1 3                    | 28.65346<br>29.42719 | 28.65354<br>29.42710 | 0.8<br>1.4                        | 57<br>98 | 3 4 2 - 4 0 4<br>4 2 2 - 2 0 2                                                      | 51.64504             | 51.22941<br>51.64509 | 1.7<br>1.7             | 15<br>29 |
| 514 - 330                                      | 52.64919             | 52.64938             | 1.6                               | 14       | 533 - 313                                                                           | 69.17960             | 69.17960             | 1.3                    | 30       |
| 642 - 524                                      | 53.12804             | 53.12801             | 1.3                               | 15       | 541 - 321                                                                           | 71.08905             | 71.08900             | 1.2                    | 28       |
| 431-211                                        | 53.89569             | 53.89558             | 1.8                               | 31       | 625-423                                                                             | 71.11595             | 71.11601             | 0.9                    | 28       |
| 652-532                                        | 54.91218             | 54.91233             | 0.9                               | 14       | 542-322                                                                             | 71.69634             | 71.69629             | 1.3                    | 27       |
| 432-212                                        | 55.05773             | 55.05776             | 1.6                               | 26       | 615-413                                                                             | 72.00731             | 72.00740             | 1.1                    | 25       |
| 651-533                                        | 55.63424             | 55.63413             | 1.5                               | 11       | 634 - 432                                                                           | 72.55373             | 72.55369             | 1.7                    | 22       |
| 5 1 5 - 3 1 3                                  | 56.29433             | 56.29427             | 1.4                               | 38       | 643 - 441                                                                           | 72.82588             | 72.82579             | 0.9                    | 11       |
| 505 - 303                                      | 56.49414             | 56.49406             | 1.4                               | 39       | 642 - 440                                                                           | 73.03818             | 73.03812             | 1.4                    | 9        |
| 4 4 0 - 2 2 0<br>4 4 1 - 2 2 1                 | 58.13652<br>58.27776 | 58.13653<br>58.27784 | 0.9<br>0.8                        | 25<br>25 | $\begin{array}{r} 6 \ 3 \ 3 \ - \ 4 \ 3 \ 1 \\ 6 \ 2 \ 4 \ - \ 4 \ 224 \end{array}$ | 74.06121<br>74.34102 | 74.06125<br>74.34102 | 1.6<br>1.8             | 20<br>23 |
| 524 - 322                                      | 58.53002             | 58.52995             | 1.4                               | 43       | 550 - 330                                                                           | 75.36957             | 75.36951             | 1.8                    | 18       |
| 52 - 322<br>533 - 331                          | 59.45715             | 59.45717             | 1.8                               | 25       | 550 - 350<br>551 - 331                                                              | 75.40014             | 75.40025             | 0.9                    | 14       |
| 5 1 4 - 3 1 2                                  | 59.70175             | 59.70170             | 1.8                               | 44       | 541 - 303                                                                           | 76.49771             | 76.49782             | 1.6                    | 12       |
| 532-330                                        | 60.13847             | 60.13839             | 1.7                               | 26       | 633-413                                                                             | 80.99733             | 80.99737             | 1.5                    | 22       |
| 523-321                                        | 60.95724             | 60.95735             | 1.3                               | 38       | 624-404                                                                             | 81.61039             | 81.61035             | 1.9                    | 19       |
| 615-431                                        | 65.07119             | 65.07117             | 2.2                               | 10       | 634-414                                                                             | 83.63168             | 83.63165             | 2.2                    | 24       |
| 523 - 303                                      | 66.36589             | 66.36596             | 1.5                               | 33       | 642 - 422                                                                           | 83.92190             | 83.92191             | 1.5                    | 19       |
| 532 - 312                                      | 67.19102             | 67.19098             | 0.8                               | 31       | 643 - 423<br>651 - 421                                                              | 85.34481             | 85.34474             | 2.0                    | 20       |
| $6\ 1\ 6\ -\ 4\ 1\ 4$<br>$6\ 0\ 6\ -\ 4\ 0\ 4$ | 68.53358<br>68.61493 | 68.53357<br>68.61501 | 1.1<br>0.8                        | 32<br>21 | $\begin{array}{r} 6 5 1 - 4 3 1 \\ 6 5 2 - 4 3 2 \end{array}$                       | 88.45063<br>88.64638 | 88.45057<br>88.64661 | 0.8<br>2.2             | 14<br>14 |
| 000 - 404                                      | 00.01493             | 06.01301             | 0.0                               | 21       | 0 5 2 - 4 5 2                                                                       | 88.64638             | 00.04001             | 2.2                    | 14       |

<sup>*a*</sup> Mean experimental value of the individual GSCD and its rms deviation. <sup>*b*</sup> Here *n* is the number of separate experimental GSCD obtained from the analysis of 74 absorption bands of the  $CH_2D_2$  molecule recorded in the present study and used in the determination of the mean term value, and its  $d_{ms}$ .

#### **References and Notes**

(1) Herzberg, G. Molecular Spectra and Molecular Structure, Infrared and Raman Spectra of Polyatomic Molecules, 1st ed.; van Nostrand: New York, 1945; Vol. II.

(2) Herzberg, G. Molecular Spectra and Molecular Structure: Electronic Spectra and Electronic Structure of Polyatomic Molecules; van Nostrand: Toronto, 1966; Vol. III.

(3) Wilson, E. B.; Decius, J. C.; Cross, P. C. Molecular vibrations. The theory of infrared and Raman vibrational spectra; McGraw-Hill: New York, 1955

- (4) Nielsen, H. H. Phys. Rev. 1941, 60, 794-810.
- (5) Nielsen, H. H. Phys. Rev. 1945, 68, 181-191.
- (6) Nielsen, H. H. Rev. Mod. Phys. 1951, 23, 90-136.

(7) Amat, G.; Nielsen, H. H.; Tarrago, G. Rotation-vibration of polyatomic molecules: higher order energies and frequencies of spectral transitions; Dekker: New York, 1971.

(8) Amat, G.; Goldsmith, M. J. Chem. Phys. 1955, 23, 1171-1172.

(9) Amat, G. Cahiers Phys. 1957, 11, 25.

(10) Mills, I. M. A specialist periodical report/Royal Society of Chemistry. Theoretical chemistry. 1974; Vol. 1, p 110.

(11) Papousek, D.; Aliev, M. R. Stud. Phys. Theor. Chem. 1982, 17, 160

(12) Califano, S. Vibrational states; Wiley: London etc., 1976.

- (13) Chen, C. L.; Maessen, B.; Wolfsberg, M. J. Chem. Phys. 1985, 83, 1795-1807.
- (14) Maessen, B.; Wolfsberg, M.; Harding, L. B. J. Phys. Chem. 1985, 89. 3324-3325.
- (15) Maessen, B.; Wolfsberg, M. J. Phys. Chem. 1985, 89, 3876-3879.
- (16) Maessen, B.; Wolfsberg, M. J. Chem. Phys. 1984, 80, 4651-4662.
- (17) Partridge, H.; Schwenke, D. W. J. Chem. Phys. 1997, 106, 4618-4639.
- (18) Schwenke, D. W.; Partridge, H. J. Chem. Phys. 2000, 113, 6592-6597.
- (19) Shirin, S. V.; Polyansky, O. L.; Zobov, N. F.; Ovsyannikov, R. I.; Csaszar, A. G.; Tennyson, J. J. Mol. Spectrosc. 2006, 236, 216-223.
- (20) Maksyutenko, P.; Rizzo, T. R.; Boyarkin, O. V. J. Chem. Phys. 2006, 125, 181101.
- (21) Tennyson, J.; Kostin, M. A.; Barletta, P.; Harris, G. J.; Polyansky, O. L.; Ramanlal, J.; Zobov, N. F. Comput. Phys. Commun. 2004, 163, 85-
- 116
  - (22) Luckhaus, D. J. Chem. Phys. 2000, 113, 1329-1347
  - (23) Quack, M.; Suhm, M. A. J. Chem. Phys. 1991, 95, 28-59.
- (24) Klopper, W.; Quack, M.; Suhm, M. A. Chem. Phys. Lett. 1996, 261, 35-44.
- (25) Klopper, W.; Quack, M.; Suhm, M. A. J. Chem. Phys. 1998, 108, 10096-10115.
- (26) Zhang, D. H.; Wu, Q.; Zhang, J. Z. H.; von Dirke, M.; Bacic, Z. J. Chem. Phys. 1995, 102, 2315-2325.

(27) Kuhn, B.; Rizzo, T. R.; Luckhaus, D.; Quack, M.; Suhm, M. A J. Chem. Phys. 1999, 111, 2565-2587; 135 pages of supplementary material published as AIP Document No PAPS JCPS A6-111-302905 by American Institute of Physics, Physics Auxiliary Publication Service, 500 Sunnyside Blvd., Woodbury, N. Y. 1179-29999.

(28) Fehrensen, B.; Luckhaus, D.; Quack, M. Chem. Phys. Lett. 1999, 300. 312-320.

(29) Fehrensen, B.; Luckhaus, D.; Quack, M. Chem. Phys. 2007, 338, 90-105.

- (30) Peyerimhoff, S. D.; Lewerenz, M.; Quack, M. Chem. Phys. Lett. 1984. 109. 563-569.
- (31) Lewerenz, M.; Quack, M. J. Chem. Phys. 1988, 88, 5408-5432.
- (32) Carrington, T.; Halonen, L.; Quack, M. Chem. Phys. Lett. 1987, 140, 512-519.

(33) Halonen, L.; Carrington, T.; Quack, M. J. Chem. Soc., Faraday Trans. 2 1988, 84, 1371-1388.

- (34) Marquardt, R.; Quack, M. J. Chem. Phys. 1991, 95, 4854-4876.
- (35) Marquardt, R.; Quack, M. J. Chem. Phys. 1998, 109, 10628-10643.
- (36) Marquardt, R.; Quack, M. J. Phys. Chem. A 2004, 108, 3166-3181. (37) Schwenke, D. W.; Partridge, H. Spectrochim. Acta, Part A 2001,
- 57. 887-895.
- (38) Schwenke, D. W. Spectrochim. Acta, Part A 2002, 58, 849-861. (39) Hollenstein, H.; Marquardt, R. R.; Quack, M.; Suhm, M. A.
- J. Chem. Phys. 1994, 101, 3588-3602.
  - (40) Wang, X. G.; Carrington, T. J. Chem. Phys. 2003, 118, 6260-6263.
  - (41) Wang, X. G.; Carrington, T. J. Chem. Phys. 2003, 119, 94-100. (42) Wang, X. G.; Carrington, T. J. Chem. Phys. 2003, 119, 101-117.
  - (43) Yu, H. G. J. Chem. Phys. 2004, 121, 6334-6340.

(44) Oyanagi, C.; Yagi, K.; Taketsugu, T.; Hirao, K. J. Chem. Phys. 2006, 124, 064311.

(45) Marquardt, R.; Quack, M.; Thanopulos, I. J. Phys. Chem. A 2000, 104, 6129-6149.

(46) Ulenikov, O. N.; Bekhtereva, E. S.; Grebneva, S. V.; Hollenstein, H.; Quack, M. Phys. Chem. Chem. Phys. 2005, 7, 1142-1150.

(47) Ulenikov, O. N.; Bekhtereva, E. S.; Grebneva, S. V.; Hollenstein, H.; Quack, M. Mol. Phys. 2006, 104, 3371-3386.

- (48) Wilmshurst, J. K.; Bernstein, H. J Can. J. Chem.-Rev. Can. Chim. **1957**, *35*, 226–235.
- (49) Olson, W. B.; Plyler, E. K.; Allen, H. C. J. Res. Natl. Bur. Stand. Sect. A-Phys. Chem. 1963, 67, 27.
- (50) Morillon-Chapey, M.; Alamichel, C. Can. J. Phys 1973, 51, 2189-2196.
- (51) Deroche, J. C.; Guelachvili, G. J. Mol. Spectrosc. 1975, 56, 76-87.
- (52) Deroche, J. C.; Graner, G.; Cabana, A. J. Mol. Spectrosc. 1975, 57, 331-347.
- (53) Deroche, J. C.; Pinson, P. J. Mol. Spectrosc. 1975, 58, 229-238. (54) Deroche, J. C.; Graner, G.; Bendtsen, J.; Brodersen, S. J. Mol. Spectrosc. 1976, 62, 68-79.
- (55) Akiyama, M.; Nakagawa, T.; Kuchitsu, K. J. Mol. Spectrosc. 1977, 64 109-124
- (56) Ulenikov, O. N.; Malikova, A. B.; Shevchenko, G. A.; Guelachvili, G.; Morillon-Chapey, M. J. Mol. Spectrosc. 1991, 149, 160-166.
- (57) Ulenikov, O. N.; Malikova, A. B.; Shevchenko, G. A.; Guelachvili, G.; Morillon-Chapey, M. J. Mol. Spectrosc. 1992, 154, 22-29.
- (58) Ulenikov, O. N.; Malikova, A. B.; Guelachvili, G.; Morillon-Chapey, M. J. Mol. Spectrosc. 1993, 159, 422-436.
- (59) Ulenikov, O. N.; Tolchenov, R. N.; Koivusaari, M.; Alanko, S.; Anttila, R. J. Mol. Spectrosc. 1994, 167, 109-130.
- (60) Ulenikov, O. N.; Hirota, E.; Akiyama, M.; Alanko, S.; Koivusaari, M.; Anttila, R.; Guelachvili, G.; Tolchenov, R. N. J. Mol. Spectrosc. 1996, 180, 423-432
- (61) Hollenstein, H.; Marquardt, R.; Quack, M.; Suhm, M. A. Ber. Bunsenges. Phys. Chem. 1995, 99, 275-281.
- (62) Signorell, R.; Marquardt, R.; Quack, M.; Suhm, M. A. Mol. Phys. 1996, 89, 297-313.
- (63) Albert, S.; Bauerecker, S.; Boudon, V.; Brown, J. M.; Champion, J. P.; Loete, M.; Nikitin, A.; Quack, M. Chem. Phys. 2009, 356, 131-148.
- (64) Niederer, H. M.; Albert, S.; Bauerecker, S.; Boudon, V.; Champion, J. P.; Quack, M. Chimia 2008, 62, 273-276.

(65) Hippler, M.; Quack, M. J. Chem. Phys. 2002, 116, 6045-6055. (66) Quack, M. Chimia 2003, 57, 147-160.

(67) Albert, S.; Albert, K. K.; Quack, M. Trends in Optics and Photonics (TOPS); Optical Society of America: Washington DC, 2003; Vol. 84, pp 177 - 180.

(68) Albert, S.; Quack, M. ChemPhysChem 2007, 8, 1271-1281.

(69) Albert, S.; Bauerecker, S.; Quack, M.; Steinlin, A. Mol. Phys. 2007, 105, 541-558.

(70) Bauerecker, S.; Taraschewski, M.; Weitkamp, C.; Cammenga, H. K. Rev. Sci. Instrum. 2001, 72, 3946-3955

(71) Bauerecker, S.; Taucher, F.; Weitkamp, C.; Michaelis, W.; Cammenga, H. K. J. Mol. Struct. 1995, 348, 237-241.

(72) Bauerecker, S. Phys. Rev. Lett. 2005, 94, 033404.

(73) Ulenikov, O. N.; Bekhtereva, E. S.; Bauerecker, S.; Albert, S.; Hollenstein, H.; Quack, M. High Resolution Spectroscopy and Dynamics of the Methane Molecule: CH2 D2 Isotopomer. In Proceedings Nineteenth Colloquium on High Resolution Molecular Spectroscopy, Salamanca, Spain, 11-16 September 2005, Paper N10, p. 395; Bermejo, D., Doménech, J. L. Moreno, M. A., Eds.; Sociedad Española de Óptica: Salamanca, 2005; ISBN 84-609-6737-9.

(74) Maki, A. G.; Wells, J. S. Wavenumber Calibration Tables from Heterodyne Frequency Measurements, Volume 821 of NIST Spec. Publ. ; National Institute of Standards and Technology: Washington, 1991.

(75) Rothman, L. S.; et al. J. Quant. Spectrosc. Radiat. Transfer 2005, 96, 139-204.

(76) Bekhtereva, E. S.; Ulenikov, O. N.; Albert, S.; Bauerecker, S.; Hollenstein, H.; Quack, M. Proceedings of the 20th Colloquium on High-Resolution Molecular Spectroscopy, Paper L7, pp 288-289; Boudon, V.,

Ed.; Université de Dijon: Dijon, 2007, and in preparation.. (77) Longuet-Higgins, H. C. *Mol. Phys.* **1963**, *6*, 445–460.

(78) Quack, M. Mol. Phys. 1977, 34, 477-504.

(79) Pepper, M. J. M.; Shavitt, I.; v. Ragué Schleyer, P.; Glukhovtsev, M. N.; Janoschek, R.; Quack, M. J. Comput. Chem. 1995, 16, 207-225.

(80) Bekhtereva, E. S.; Ulenikov, O. N.; Sinitsin, E. A.; Albert, S.; Bauerecker, S.; Hollenstein, H.; Quack, M. On the semi-empirical deter-

mination of the methane potential energy surface. In Proceedings of the 20th Colloquium on High-Resolution Molecular Spectroscopy, Paper J30, p 268; Boudon, V., Ed.; Université de Dijon: Dijon, 2007 and in preparation.

- (81) Watson, J. K. G. Mol. Phys. 1968, 15, 479-490.
- (82) Luckhaus, D.; Quack, M. Mol. Phys. 1989, 68, 745-758.

(83) Lee, T. J.; Martin, J. M. L.; Taylor, P. R. J. Chem. Phys. 1995, 102, 254-261.

(84) Raynes, W. T.; Lazzeretti, P.; Zanasi, R.; Sadlej, A. J.; Fowler, P. W. Mol. Phys. 1987, 60, 509-525

(85) Gray, D. L.; Robiette, A. G. Mol. Phys. 1979, 37, 1901-1920.

(86) Duncan, J. L.; Law, M. M. Spectrochim. Acta, Part. A 1997, 53, 1445-1457.

(87) Blunt, V. M.; Mina-Camilde, N.; Cedeno, D. L.; Manzanares, C. Chem. Phys. 1996, 209, 79–90.

(88) Quack, M. J. Chem. Phys. 1985, 82, 3277-3283.

(89) Ulenikov, O. N.; Bekhtereva, E. S.; Albert, S.; Bauerecker, S.; Hollenstein, H.; Quack, M., in preparation.

(90) Ulenikov, O. N.; Bekhtereva, E. S.; Sinitsin, E. A.; Albert, S.; Hollenstein, H.; Quack, M. On the Global Analysis of the CH<sub>3</sub>D Rovibrational Energies. In *Book of Abstracts of the 20th International Conference on High Resolution Molecular Spectroscopy, Praha 2008*, Paper D27, p 71; Bludský, O., Pracna, P., Urban, S., Eds.; ICT Press: Praha, 2008, ISBN 978-80-7080-689-0.

JP809839T